Fractional PID Control for Gravitational Wave Detection Satellites Considering Output Characteristics of Micro-propellers

ZHOU Junjie1, PANG Aiping1, ZHOU Hongbo1, MENG Fanwei2, LIU Hui3

PDF(3029 KB)
PDF(3029 KB)
Journal of Deep Space Exploration ›› 2023, Vol. 10 ›› Issue (3) : 292-302. DOI: 10.15982/j.issn.2096-9287.2023.20220058
Special Issue:Space Gravitational Wave Detection

Fractional PID Control for Gravitational Wave Detection Satellites Considering Output Characteristics of Micro-propellers

  • ZHOU Junjie1, PANG Aiping1, ZHOU Hongbo1, MENG Fanwei2, LIU Hui3
Author information +
History +

Abstract

Considering low-frequency disturbance of thrust caused by unexpected electrical breakdown and temperature drift in the operation of microwave ion thruster, as well as the ultra-low bandwidth and strong robustness requirements of the drag-free system, which is converted into a frequency domain constraint index, a fractional-order PID was designed as a drag-free controller with perturbation suppression capability as objective function. Simulation study shows that the control had good robustness to various disturbances of the system compared with the classical PID controller, and could suppress the control effects brought by thruster firing and temperature drift, and finally achieved higher control accuracy. The research provides reference for the high-precision control method of gravitational wave detection without dragging satellite considering micro-propulsion system.

Keywords

gravitational wave detection / drag-free control / ion thruster / unexpected electrical breakdown / fractional PID

Cite this article

Download citation ▾
ZHOU Junjie, PANG Aiping, ZHOU Hongbo, MENG Fanwei, LIU Hui. Fractional PID Control for Gravitational Wave Detection Satellites Considering Output Characteristics of Micro-propellers. Journal of Deep Space Exploration, 2023, 10(3): 292‒302 https://doi.org/10.15982/j.issn.2096-9287.2023.20220058

References

[1] CASTELLI E. LISA Pathfinder noise performance results:disturbances in the sub-mHz frequency band and projection to LISA[D]. Trento:University of Trento,2020.
[2] 李永,刘旭辉,汪旭东,等. 空间极小推力宽范围可调推进技术研究进展[J]. 空间控制技术与应用,2020,45(6):1-8
LI Y,LIU X H,WANG X D,et al. Review and prospect on the large-range thrust throttling technology with extremely small thrust[J]. Aerospace Control and Application,2020,45(6):1-8
[3] LUO J,BAI Y Z,CAI L,et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity,2020,37(18):185013
[4] GIULICCHI L,WU S F,FENAL T. Attitude and orbit control systems for the LISA Pathfinder mission[J]. Aerospace Science and Technology,2013,24(1):283-294
[5] LANGE B. The drag-free satellite[J]. AIAA journal,1964,2(9):1590-1606
[6] Staff of the Space Department,Johns Hopkins University,Staff of the Guidance Control Laboratory,Stanford Universit. A satellite freed of all but gravitational forces:TRIAD I[J]. Journal of Spacecraft and Rockets,1974,11(9):637-644
[7] LIU H,NIU X,ZENG M,et al. Review of micro propulsion technology for space gravitational waves detection[J]. Acta Astronautica,2022,193:496-510
[8] SNYDER N J,WILLIAMS W M,DENTON D L,et al. A Satellite Freed of all but Gravitational Forces:"TRIAD I"[J]. Journal of Spacecraft & Rockets,1974,11(9):637-644
[9] BENCZE W J,DEBRA D B,HERMAN L,et al. On-orbit performance of the Gravity Probe B drag-free translation control system[C]//Proc. 29th Guidance and Control Conference. Breckenridge,Colorado:American Astronautical Society,2006.
[10] LI J,BENCZE W J,DEBRA D B,et al. On-orbit performance of Gravity Probe B drag-free translation control and orbit determination[J]. Advances in Space Research,2007,40(1):1-10
[11] CANUTO E. Embedded model control:outline of the theory[J]. ISA transactions,2007,46(3):363-377
[12] FICHTER W,GATH P,VITALE S,et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity,2005,22(10):S139
[13] HU Z,WANG P,DENG J,et al. The drag-free control design and in-orbit experimental results of “Taiji-1”[J]. International Journal of Modern Physics A,2021,36(11n12):2140019
[14] 苟兴宇,王丽娇,李明群,等. 天琴一号卫星加速度模式无拖曳控制[J]. 宇航学报,2021,42(5):603-610
GOU X Y,WANG L J,LI M Q,et al. Acceleration mode drag-free control of TQ-1 satellite[J]. Journal of Astronautics,2021,42(5):603-610
[15] WU S F,FERTIN D. QFT based drag-free and attitude controller design/tuning[C]//Proceedings of 6th International ESA Conference on Guidance, Navigation and Control Systems. Loutraki, Greece: ESA, 2006.
[16] WU S F,FERTIN D. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica,2008,62(12):668-682
[17] CANUTO E,NOVARA C,CARLUCCI D,et al. Spacecraft dynamics and control:the embedded model control approach[M]. Butterworth-Heinemann: Elsevier, 2018.
[18] LIAN X,ZHANG J,LU L,et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems,2021,57(6):4085-4096
[19] 杨飞,谈树萍,薛文超,等. 饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制[J]. 自动化学报,2020,46(11):2327-2349
YANG F,TAN S P,XUE W C,et al. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites[J]. ACTA AUTOMATICA SINICA,2020,46(11):2327-2349
[20] 李传江,王玉爽,马广富,等. 带卡尔曼估计器的无拖曳卫星干扰补偿控制[J]. 哈尔滨工业大学学报,2012,44(7):8-13
LI C J,WANG Y S,MA G F,et al. Disturbance compensation control for drag-free satellite with Kalman estimator[J]. Journal of Harbin Institute of Technology,2012,44(7):8-13
[21] WANG X,LONG J,ZHU Q,et al. Drag-free control for cold air thrusters based on variable universe adaptive fuzzy PID[C]//2014 IEEE International Conference on Information and Automation (ICIA). [S.l.]: IEEE,2014.
[22] 张天平,张雪儿,蒲彦旭. 离子推力器非预期电击穿的主要诱发因素及机制[J]. 真空与低温,2021,27(1):1-11.
ZHANG T P,ZHANG X E,PU Y X,Main causes and mechanisms of unexpected breakdowns of ion thruster[J]. Vacuum & Cryogenics,2021,27(1):1-11.
[23] 张雪儿,张天平,李得天,等. 离子推力器非预期电击穿特性及其主要影响因素对比研究[J]. 航天器环境工程,2021,38(1):63-70
ZHANG X E,ZHANG T P,LI D T,et al. Characteristics and main influencing factors of unexpected electric breakdown in ion thruster[J]. Spacecraft Environment Engineering,2021,38(1):63-70
[24] PINERO L,RAWLIN V. Recycle requirements for NASA's 35 cm xenon ion thruster[C]//Proceedings of 30th Joint Propulsion Conference and Exhibit. Indianapolis, IN, USA: [s.n.], 1994.
[25] YIM J T,SOULAS G C,SHASTRY R,et al. Update of the NEXT ion thruster service life assessment with post-test correlation to the long duration test[C]// Proceedings of International Electric Propulsion Conference. Atlanta, GA: IEPC, 2017.
[26] WALLACE N,JAMESON P,SAUNDERS C,et al. The GOCE ion propulsion assembly-lessons learnt from the first 22 months of flight operations[C]//Proceedings of 32nd International Electric Propulsion Conference. Wiesbaden,Germany: AIAA, 2011.
[27] WALLACE N. Testing of the Qinetiq T6 thruster in support of the ESA BepiColombo mercury mission for the ESA BepiColombo mission[C]//Proceedings of 4th International Spacecraft Propulsion Conference. Cagliari,Sardinia,Italy: CDROM, 2004.
[28] DESCOEUDRES A,DJURABEKOVA F,NORDLUND K. DC breakdown experiments with cobalt electrodes[J]. Journal of Applied Physics,2015,118(3):33303
[29] HAINES R. Development of a drag-free control system[C]//Proceedings of 14th Annual AIAA/USU Conference on Small Satellites. Logan (Utah):AIAA, 2000.
[30] LUO J,CHEN L S,DUAN H Z,et al. TianQin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity,2016,33(3):03501
[31] 张邦楚,王少锋,韩子鹏,等. 飞航导弹分数阶 PID 控制及其数字实现[J]. 宇航学报,2005,26(5):653-656
ZHANG B C,WANG S F,HAN Z P,et al. Using Fractiona-l order PID Controller for Control of Aerodynamic Missile[J]. Journal of Astronautics,2005,26(5):653-656
[32] MENG F,LIU S,PANG A,et al. Fractional order PID parameter tuning for solar collector system based on frequency domain analysis[J]. IEEE Access,2020,8:148980-148988
PDF(3029 KB)

Accesses

Citations

Detail

Sections
Recommended

/