PDF(2091 KB)
Design and Verification of TT&C and Data Transmission Integrated System for Tianwen-1 Mars Orbiter
- WANG Minjian1,2, ZHU Xinbo1,2, HE Chunli1,2, LI Jinyue1,2, NIU Junpo1,2, YIN Xingfeng1,2, LIU Lingya3
Author information
+
1. Shanghai Institute of Satellite Engineering, Shanghai 201109, China;
2. Shanghai Key Laboratory of Deep Space Exploration Technology, Shanghai 201109, China;
3. School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
Show less
History
+
Received |
Revised |
Published |
16 Sep 2021 |
01 Sep 2022 |
26 Apr 2023 |
Issue Date |
|
26 Apr 2023 |
|
ITo deal with the problems of ultra-long distance and large dynamic communication under a maximum distance of 400 million kilometers of Tianwen-1 Mars Orbiter, the TT&C and data transmission communication system of Tianwen-1 Mars Orbiter realized high-sensitivity acquisition of -156dbm weak signals and adaptive data transmission and reception under large dynamic conditions through integrated TT&C and data transmission technology of multi-antenna beam shaping, multi bit rate adaptive transmission and reception processing technology, high-sensitivity signal acquisition technology, electromagnetic interference suppression technology under ultra-high sensitivity and high-precision stable pointing technology of large aperture antenna under extremely low temperatures. Except for celestial block, the whole process was 100% covered by the earth communication link and beam, and data transmission rate to the earth was up to 1Mbps at the farthest distance of 400 million kilometers. This technology has been examined and verified in Tianwen-1 Mars exploration mission, and can provide reference for the design and on-orbit work of the TT&C data transmission communication system in subsequent deep space exploration missions.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 蒋文兵,郭涛涛. 深空探测VLBI测量技术[J]. 大众科技,2012,14(7):20-25.
JIANG W B,GUO T T. The VLBI technology of deep space exploration[J]. Popular Science&Technology,2012,14(7):20-25.
[2] 饶启龙. 基于CCSDS的火星探测器测控通信系统链路分析与设计[D]. 上海:上海交通大学,2012.
RAO Q L. The link analyzation and design based on CCSDS for Mars probe TTC&C system[D]. Shanghai:Shanghai Jiao Tong University,2012.
[3] 崔荣春. 日凌对卫星通信系统的影响[J]. 无线电通信技术,1991(5):303-307
[4] 陈少伍,董光亮,李海涛,等. MSL测控特点以及自主火星探测测控关键技术[J].飞行器测控学报,2015,34(1):1-9.
CHEN S W, DONG G L, LI H T, et al. TT&C characteristics of MSL and key TT&C technologies for independent Mars exploration[J]. Journal of Spacecraft TT&C Technology,2015,34(1):1-9.
[5] 张凤林. 宽波束天线噪声温度的计算[J]. 遥控遥测,2004(5):14-17,21
ZHANG F L. Calculating noise temperature of hemisphere pattern antenna[J]. Journal of Telemetry,Tracking and Command,2004(5):14-17,21
[6] OTOSHI T Y. Noise,“temperature theory and applications for deep space communications antenna systems" [M]. Fitchburg MA :Artech House,2008.
[7] DIJK J,JEUKEN M,MAANDERS E J. Antenna noise temperature[J]. Proceedings of the Institution of Electrical Engineers,1968,115(10):1403-1410
[8] 吴亚军,刘庆会,陈冠磊,等. VLBI相时延及其在深空探测器测定轨中的应用[J]. 中国科学:信息科学,2014(2):221-230
WU Y J,LIU Q H,CHEN G L,et al. VLBI phase delay and its application in orbit determination of spacecraft[J]. Scientia Sinica Informationis,2014(2):221-230
[9] 刘庆会. 火星探测VLBI测定轨技术[J]. 深空探测学报(中英文),2018,5(5):435-441
LIU Q H. VLBI orbit determination technology for Mars exploration[J]. Journal of Deep Space Exploration,2018,5(5):435-441