Integrated Design Method for Laser Topographic Mapping and Navigation of Small Celestial Bodies

GUO Shaogang1,2, LI Lin1,2, ZHU Feihu1,2, WANG Li1,2, ZHANG Yunfang1,2, ZHAO Qin1,2, ZHENG Yan1,2, MA Yuechao1,2, ZHANG Hengkang1,2

PDF(2764 KB)
PDF(2764 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (4) : 417-426. DOI: 10.15982/j.issn.2096-9287.2022.20220041
Special Issue: Small Celestial Body Exploration and Defense
Special Issue: Small Celestial Body Exploration and Defense

Integrated Design Method for Laser Topographic Mapping and Navigation of Small Celestial Bodies

  • GUO Shaogang1,2, LI Lin1,2, ZHU Feihu1,2, WANG Li1,2, ZHANG Yunfang1,2, ZHAO Qin1,2, ZHENG Yan1,2, MA Yuechao1,2, ZHANG Hengkang1,2
Author information +
History +

Abstract

Aiming at the requirements of high frame rate,high resolution and high ranging accuracy in small celestial body detection,the characteristics of laser detection technology were deeply analyzed,and a hybrid solid-state laser 3D terrain mapping and navigation integrated design method was proposed. High imaging frame rate was realized by single photon array device and 532nm fiber laser,large field of view and sub-pixel resolution were realized by multi-mode scanning of two-dimensional voice coil motor fast mirror,and high-precision beam expansion and diffraction of laser beam were realized by Damman grating beam splitter. The results show that the laser ranging accuracy is better than 3 cm (3 sigma),the frame rate is 4 Hz,and the imaging resolution is as high as 1 100×1 100. The proposed method can give consideration to both topographic mapping and navigation,realize muti-function,light and miniaturized design,and greatly reduce resource consumption. It has good guiding significance for the implementation of small celestial body exploration missions.

Keywords

small celestial body / laser topographic mapping and navigation / hybrid solid-state / single photon array / fast mirror

Cite this article

Download citation ▾
GUO Shaogang, LI Lin, ZHU Feihu, WANG Li, ZHANG Yunfang, ZHAO Qin, ZHENG Yan, MA Yuechao, ZHANG Hengkang. Integrated Design Method for Laser Topographic Mapping and Navigation of Small Celestial Bodies. Journal of Deep Space Exploration, 2022, 9(4): 417‒426 https://doi.org/10.15982/j.issn.2096-9287.2022.20220041

References

[1] 林杨挺. 太阳系起源与小天体探测的前沿科学问题[J]. 空间碎片研究,2019,19(3):14-21
LIN Y T. Key questions of solar system formation and exploration of small celestial bodies[J]. Space Debris Research,2019,19(3):14-21
[2] LI C,WANG C,WEI Y,et al. China’s present and future lunar exploration program[J]. Science,2019,365:238-239
[3] 黄江川,李翔宇,乔栋,等. 小天体多目标多模式探测任务设计[J]. 中国科学:物理学力学天文学,2019,49:084512
HUANG J C,LI X Y,QIAO D,et al. Mission design for multi-target and multi-mode rendezvous missions to small bodies[J]. Sci Sin-Phys Mech Astron,2019,49:084512
[4] 徐伟彪,赵海斌. 小行星深空探测的科学意义和展望[J]. 深空探测学报(中英文),2005,20(11):1183-1190
XU W H,ZHAO H B. Scientific significance and prospect of asteroid deep space exploration[J]. Journal of Deep Space Exploration,2005,20(11):1183-1190
[5] PATRICK M,FRANCESCA E D,WILLIAM F B. Asteroids IV [M]. Tucson:University of Arizona Press,2015.
[6] 季江徽,胡寿村. 太阳系小天体表面环境综述[J]. 航天器环境工程,2005,20(11):1183-1190
JI J H,HU S C. A review of the surface environment of small bodies in solar system[J]. Spacecraft Environment Engineering,2005,20(11):1183-1190
[7] PERNA D,BARUCCI M A,FULCHIGNONI M. The near-Earth objects and their potential threat to our planet[J]. The Astronomy and Astrophysics Review,2013,21(1):1-28
[8] 张韵,刘岩,李俊峰. 小行星防御动能撞击效果评估[J]. 深空探测学报(中英文),2017,4(1):51-57
ZHANG Y,LIU Y,LI J F. Evaluation of effects of kinetic impact deflection on hazardous asteroids[J]. Journal of Deep Space Exploration,2017,4(1):51-57
[9] 马鹏斌,宝音贺西. 近地小行星威胁与防御研究现状[J]. 深空探测学报(中英文),2016,3(1):10-17
MA P B,BAOYIN H X. Research status of the near-Earth asteroids’ hazard and mitigation[J]. Journal of Deep Space Exploration,2016,3(1):10-17
[10] 刘德赟,赖小明,王露斯,等. 小天体表面采样技术综述[J]. 深空探测学报(中英文),2018,5(3):246-261
LIU D Y,LAI X M,WANG L S,et al. Summary of sampling technology for small celestial bodies[J]. Journal of Deep Space Exploration,2018,5(3):246-261
[11] 中国国家航天局. 小行星探测任务有效载荷和搭载项目机遇公告[EB/ OL]. (2019 -04 -20)[2022-05-06]. http:/ / www. cnsa. gov. cn/ n6758823/ n6758839/ c6805886/ part/6780392. pdf.
[12] 李翔宇,乔栋,黄江川,等. 小行星探测近轨操作的轨道动力学与控制[J]. 中国科学:物理学力学天文学,2019,49:084508.
LI X Y,QIAO D,HUANG J C,et al. Dynamics and control of proximity operations for asteroid exploration mission (in Chinese)[J]. Sci Sin-Phys Mech Astron,2019,49:084508.
[13] 澄空. 日本隼鸟-2 完成首次小行星采样返回[J]. 国际太空,2020(12):19-20
[14] LAURETTA D S,BALRAM-KNUTSON S S,BESHORE E,et al. OSIRIS-Rex:sample return from asteroid(101955)Bennu[J]. Space Science Reviews,2017,212(1-2):1-60
[15] 王科,郑适,解虎,等. 雷达技术在小天体任务中的应用研究[J]. 深空探测学报(中英文),2019,6(5):496-502
WNGA K,ZHENG S,XIE H,et al. Application study of radar technology for small body exploration missions[J]. Journal of Deep Space Exploration,2019,6(5):496-502
[16] KOBAYASHI T,OYA H,ONO T. A-scope analysis of subsurface radar sounding of lunar mare region[J]. Earth Planets Space,2002,54(2002):973-982
[17] HERGENROTHER C W,BARUCCI M A,BARNOUIN O. The design reference asteroid for the OSIRIS-REx mission target (101955) Bennu[EB/OL]. (2014-09-16)[2022-05-06]. https://arxiv.org/abs/1409.4704.
[18] SUGITA S,HONDA R,MOROTA T,et al. The geomorphology,color,and thermal properties of Ryugu:implications for parent-body processes[J]. Science,2019,364(6437):eaaw0422
[19] 李雁斌,王凤姣,江利中. 小行星浅表探测雷达技术[J]. 制导与引信,2015,36(1):51-58
LI Y B,WANG F J,JIANG L Z. Asteroid subsurface detection radar technology[J]. Guidance & Fuze,2015,36(1):51-58
[20] DALY M G,BARNOUIN O S,DICKINSON C,et al. The OSIRIS-REx Laser Altimeter (OLA) investigation and instrument[J]. Space Science Reviews,2017,.
[21] LAURETTA D S,BALRAM-KNUTSON S S,BESHORE E,et al. OSIRIS-REx:sample return from Asteroid (101955) Bennu[J]. Space Science Reviews,2017,212:925-984
[22] YAMADA R,SENSHU H,NAMIKI N,et al. Albedo observation by Hayabusa 2 LIDAR:instrument performance and error evaluation[J]. Space Sci Rev,2017,208:49-64
[23] MIZUNO T,KASE T,SHIINA T,et al. Development of the Laser Altimeter (LIDAR) for Hayabusa2[J]. Space Science Reviews,2017,208:33-47
[24] 刘旺旺,李茂登,李涛,等. 天问一号探测器火星着陆自主避障技术设计与验证[J]. 宇航学报,2022,43(1):46-55
LIU W W,LI M D,LI T,et al. Design and qualification hazard detection and avoidance system for Tianwen-1 Mars landing mission[J]. Journal of Astronautics,2022,43(1):46-55
[25] STANN B L,DAMMANN J F,GIORNO M D,et al. Integration and demonstration of MEMS-scanned LADAR for robotic navigation[J]. Proc. of SPIE,2014,9084:90840J
[26] STANN B L,DAMMANN J F,GIZAA M M,et al. MEMS-scanned ladar for small unmanned air vehicles[J]. Proc. of SPIE,2018,10636:106360E
[27] SORNSIN B A,SHORT B W,BOURBEAU T N,et al. Global shutter solid state flash LIDAR for spacecraft navigation and docking applications[J]. Proc. of SPIE,2019,11005:110050W
[28] 陈建武,史永敏,祝浩,等. 深空探测中着陆雷达技术发展与应用研究[J]. 航天返回与遥感,2020,41(4):10-20
CHEN J W,SHI Y M,ZHU H,et al. Research on the development and application of landing radar in deep space explorations[J]. Spacecraft Recovery & Remote Sensing,2020,41(4):10-20
[29] SUN X L,NEUMANN G A,ABSHIRE J B,et al. Mars 1 064 nm spectral radiance measurements determined from the receiver noise response of the Mars orbiter laser altimeter[J]. Applied Optics,2006,45(17):3960-3971
[30] ARAKI H,TAZAWA S,NODA H,et al. Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE[J]. Advances in Space Research,2008,42(2):317-322
[31] 舒嵘,徐卫明,黄庚华. 用于行星导航和软着陆的激光雷达系统[C]//中国宇航学会深空探测技术专业委员会第十届学术年会论文集. 太原,中国宇航学会深空探测技术专业委员会,2013.
[32] MIZUNO T,KASE T,SHIINA T,et al. Development of the Laser Altimeter (LIDAR) for Hayabusa 2[J]. Space Science Reviews,2017,208(1/2/3/4):33-47
[33] DALY M G,BARNOUIN O S,DICKINSON C,et al. The OSIRIS-REx Laser Altimeter (OLA) investigation and instrument[J]. Space Science Reviews,2017,212(1/2):899-924
[34] TSUDA Y,NAKAZAWA S,KUSHIKI K,et al. Flight status of robotic asteroid sample return mission Hayabusa 2[J]. Acta Astronautica,2016,127:702-709
[35] CARMO J P D. Imaging LIDAR technology developments at the European Space Agency[J]. Proc. of SPIE,2011,19:800129
[36] 李占利,周康,牟琦,等. TOF相机实时高精度深度误差补偿方法[J]. 红外与激光工程,2019,48(12):1213004
LI Z L,ZHOU K,MOU Q,et al. TOF camera real-time high precision depth error compensation method[J]. Infrared and Laser Engineering,2019,48(12):1213004
[37] REDDY V. The observation of 2016HO3[C]//AAS/Division for Planetary Sciences Meeting. Provo, Utah: AAS, 2017.
[38] DEMEO F E,ALEXANDER C M O D,WALSH K J,et al. The compositional structure of the asteroid belt[J]. Asteroid IV,2015,505(7485):629-634
[39] 王昊,马月华,赵海斌,等. 利用修正高斯模型分析Q型近地小行星表面矿物光谱特[J]. 天文学报,2016,57(4):437-446.
WANG H,MA Y H,ZHAO H B,et al. Analysis of Q-type near-Earth asteroid spectra with modified Gaussian model[J]. Acta Astronomica SinicA,2016,57(4):437-446.
[40] 向静静. 高速高灵敏度InP/InGaAs雪崩光电二极管[D]. 武汉:华中科技大学,2014.
XIANG J J. High-speed and high sensitivity InP/InGaAs APDs[D]. Wuhan:Huazhong University of Science & Technology,2014.
PDF(2764 KB)

Accesses

Citations

Detail

Sections
Recommended

/