Status and Challenges of Reusable Launch Vehicle Recovery Technology

SONG Zhengyu1, HUANG Bing2, WANG Xiaowei1, ZHANG Hongjian2

PDF(1950 KB)
PDF(1950 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (5) : 457-469. DOI: 10.15982/j.issn.2096-9287.2022.20220021

Status and Challenges of Reusable Launch Vehicle Recovery Technology

  • SONG Zhengyu1, HUANG Bing2, WANG Xiaowei1, ZHANG Hongjian2
Author information +
History +

Abstract

A reusable launch vehicle can take off vertically and horizontally, and then land vertically, horizontally, or by parachute, so as to form various combinations of takeoff and landing schemes. Aiming at the different recovery modes of reusable launch vehicle, this paper discusses the key technologies of Vertical Takeoff and Vertical Landing (VTVL), parachute recovery, and Horizontal Takeoff and Horizontal Landing (HTHL), covering key technologies for other combinations. For VTVL mode, three key technologies, such as engine throttling, multiple start-up, and landing mechanism, are analyzed in detail. For parachute recovery, the technologies relating to the landing area control of rocket jettisons and aerial recovery are introduced. For the HTHL mode based on the rocket propulsion system, five challenges including the coupling mechanism under complex aerodynamic thermal environment, thermal protection, landing mechanisms, guidance and control, are discussed. The characteristics of the three recovery modes are briefly summarized and compared.

Keywords

reusable launch vehicle / vertical takeoff and vertical landing / parachute recovery / horizontal takeoff and horizontal landing

Cite this article

Download citation ▾
SONG Zhengyu, HUANG Bing, WANG Xiaowei, ZHANG Hongjian. Status and Challenges of Reusable Launch Vehicle Recovery Technology. Journal of Deep Space Exploration, 2022, 9(5): 457‒469 https://doi.org/10.15982/j.issn.2096-9287.2022.20220021

References

[1] BONHOMME C,IANNETTI A,GIRARD N. et al. Prometheus:European next generation liquid rocket engine[C]//The 68th International Astronautical Congress. Adelaide,Australia:[s. n. ],2017.
[2] RICHARDSON M P,HARDY W F. Economic benefits of reusable launch vehicles for space debris removal[C]//The 68th International Astronautical Congress. Adelaide,Australia:[s. n. ],2017.
[3] HELLMAN B M,BRADFORD J E,BRAD D. et al. Two stage to orbit conceptual vehicle designs using the SABRE engine[C]// AIAA Space 2016. Long Beach,Virginia:AIAA,2016.
[4] METHA U B,AFTOSMIS M J,BOWLES J V,et al. Skylon aerodynamics and SABRE plumes[C]//The 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow,Scotland:AIAA,2015 .
[5] 张楠,孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进,2020,46(6):1-12
ZHANG N,SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion,2020,46(6):1-12
[6] WANG X W,WU S B,GAO Z H,et al. Recovery technology of launch vehicle stage[C]//The 67th International Astronautical Congress. Guadalajara,Mexico:AIAA,2016.
[7] 宋征宇,黄兵,汪小卫,等. 重复使用运载器的发展及其关键技术[J]. 前瞻科技,2022,1(1):63-75.
SONG Z Y,HUANG B,WANG X W,et al. Development and key technologies of reusable launch vehicle[J]. Science and Technology Foresight,2022,1(1):63-75.
[8] 宋征宇,蔡巧言,韩鹏鑫,等. 重复使用运载器制导与控制技术综述[J]. 航空学报,2021,42(11):525050
SONG Z Y,CAI Q Y,HANP X,et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica,2021,42(11):525050
[9] 赵海斌,潘豪,王聪,等. 运载火箭垂直回收着陆段制导导航与控制技术研究[J]. 导弹与航天运载技术,2021,378(1):76-81
ZHAO H B,PAN H,WANG C,et al. Vertical landing guidance navigation and control of reusable launch vehicle[J]. Missiles and Space Vehicles,2021,378(1):76-81
[10] SONG Z,WANG C. Powered Soft landing guidance method for launchers with non-cluster configured engines[J]. Acta Astronautica,2021,189:379-390
[11] 容易,王俊峰,祁峰等. 推力调节需求优化设计研究[J]. 导弹与航天运载技术,2020,375(4):1-5.
RONG Y,WANG J F,QI F,et al. Research on optimal design of thrust regulation requirements[J]. Missiles and Space Vehicles,375(4):1-5.
[12] 成鹏. 变推力火箭发动机喷雾燃烧动态过程研究[D]. 长沙:国防科技大学,2018.
CHENG P. The dynamics of spray combustion in variable thrust rocket engines[D]. Changsha:National University of Defense Technology,2018.
[13] DRESSLER G A. Summary of deep throttling rocket engines with emphasis on Apollo LMDE :AIAA Paper 2006-5220[R]. [S. l. ]:AIAA,2006.
[14] ERIN M B,ROBERT A F. A historical systems study of liquid rocket engine:throttling capabilities:AIAA 2010-6541[R]. [S. l. ]:AIAA,2010.
[15] 宋征宇. 航天运载器及机构技术研究展望[C]//第三届中国航天大会航天运载器机构技术助力产业发展论坛. 福州:[s. n. ],2020.
SONG Z Y. Research on Technology development of launch vehicle mechanism[C]//China Space Conference,Fuzhou:[s. n. ] ,2020.
[16] 袁晗,王小军,张宏剑,等. 重复使用火箭着陆结构稳定性分析[J]. 力学学报,2020,52(4):1007-1023
YUAN H,WANG X J,ZHANG H J,et al. Stability analysis of reusable launch vehicle landing structure[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(4):1007-1023
[17] WANG X W,WANG T S,DONG X L. Aerial recovery technology of launch vehicle[C]//The 71st International Astronautical Congress ,IAC 2020. [S. l. ]:IAC,2020.
[18] SZIROCZAK D,SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences,2016,84:1-28
[19] YANG Z,LI J,ZHANG L,et al. Behaviors of hypersonic wing under aerodynamic heating[J]. Journal of Aerospace Engineering,2021,34(5):04021058
[20] 周印佳, 张志贤, 付新卫, 等. 高超声速飞行器热防护一体化计算方法[J]. 航空学报,2021,42(7):1-10.
ZHOU Y J, ZHANG Z X, FU X W, et al. Integrated computing method for ablative thermal protection system of reentry vehicles[J]. 2021, 42(7): 1-10.
[21] 李佳伟,王江峰,杨天鹏,等. 高超声速飞行器前缘流-热-固一体化计算[J]. 国防科技大学学报,2018,40(6):9-16
LI J W,WANG J F,YANG T P,et al. Fluid-thermal study of integrated algorithm for aerodynamically hypersonic heated leading edges[J]. Journal of National University of Defense Technology,2018,40(6):9-16
[22] JOHN B,CHANDRASHEKHARA S,PANNEERSELVAM V. Conjugate heat transfer study of hypersonic flow past a cylindrical leading edge composed of functionally graded materials[J]. Journal of Mechanical Engineering Science,2021,236(8):4394-4411
[23] DEIERLING P,ZHUPANSKA O,PASILIAO C. Thermo-mechanical behavior of spatially tailored functionally graded materials in a high temperature environment[C]//Proceedings of the American Society for Composites:Thirtieth Technical Conference. USA:American Society for Composites ,2015.
[24] 王晨,陈海波,王用岩,等. 温度效应对铝合金壁板高频声振疲劳寿命的影响研究[J]. 应用力学学报,2018,35(4):701-708
WANG C,CHEN H B,WANG Y Y,et al. Research on the dynamic response of highway crash cushion computational model[J]. Chinese Journal of Applied Mechanics,2018,35(4):701-708
[25] 阎彬. 结构-热耦合问题及结构疲劳的可靠性分析方法研究[D]. 西安:西安电子科技大学,2013.
YAN B. Research on reliability analysis methods of structural-thermal coupling and structural fatigue[D]. Xian: Xidian University,2013.
[26] GONG C,WANG Y GU L. An approach for stress analysis of corrugated-core integrated thermal protection system under thermal and mechanical environment[J]. Composite Structures,2018,185:1-26
[27] GOU J,YAN Z,HU J,et al. The heat dissipation,transport and reuse management for hypersonic vehicles based on regenerative cooling and thermoelectric conversion[J]. Aerospace Science and Technology,2021,108:106373
[28] 龚春林,苟建军,唐硕. 高超声速飞行器气动热耗散、输运和再利用管理技术[M]. 北京:科学出版社,2021.
[29] MARTINEZ O A,SHARMA A,SANKAR B V,et al. Thermal force and moment determination of an integrated thermal protection system[J]. AIAA Journal,2010,48(1):119-128
[30] 王一凡. 面向高速飞行器的波纹夹芯型一体化热防护设计及热力耦合分析方法研究[D]. 西安:西北工业大学,2017.
WANG Y F. Design and Thermal-Mechanical analysis of corrugated-core integrated thermal protection system for hypersonic vehicle[J]. Xi’an:Northwestern Polytechnical University,2017.
[31] GLASS D E. Ceramic Matrix Composite (CMC) Thermal Protection System (TPS) and hot structures for hypersonic vehicles[C]//The 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton,Ohio,USA:AIAA,2008.
[32] GLASS D E. Heat-Pipe-Cooled leading edges for hypersonic vehicles[C]//Workshop on Materials and Structures for hypersonic vehicles. California,USA:[s. n. ],2006.
[33] 艾邦成,陈思员,韩海涛. 复杂构型前缘疏导式热防护技术[J]. 气体物理,2019,4(1):1-7
AI B C,CHEN S Y,HAN H T,et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases,2019,4(1):1-7
[34] 唐钰栋. 新型号大型客机起落架结构设计及优化[D]. 兰州:兰州理工大学,2021.
TANG Y D. Structural design and optimization of landing gear of new type large airliner[D]. Lanzhou:University of Technology,2021.
[35] FEI C W,LIU H T,ZHU Z Z. Whole-process design and experimental validation of landing gear lower drag stay with global/local linked driven optimization strategy[J]. Chinese Journal of Aeronautics. 2021,34(2):318-328.
[36] 张沈瞳. 基于虚拟样机技术的起落架着陆载荷分析[J]. 工程设计学报. 2021,28(6):759-761.
ZHANG S T. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design. 2021,28(6):759-761.
[37] 王翔华,成玲,张一帆. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报. 2020,41(3):69-75.
WANG X H,CHENG L,ZHANG Y F. Structural design and finite element analysis of landing gear with leaf spring made of 3-D woven composite[J]. Journal of Textile Research. 2020,41(3):69-75.
[38] YU C M,ZHAO D J,YANG Y. Efficient convex optimization of reentry trajectory via the chebyshev pseudospectral method[J]. International Journal of Aerospace Engineering,2019,2:1-9
[39] MOORE T. Space shuttle entry terminal area energy management[R]. USA:NASA Technical Memorandum,1991.
[40] RIDDER S D,MOOI J E. Optimal longitudinal trajectories for reusable space vehicles in the terminal area[J]. Journal of Spacecraft & Rockets,2011,48(4):642-653
[41] BAEK J,LEE D,KIM J,et al. Trajectory optimization and the control of a re-entry vehicle in TAEM phase[J]. Journal of Mechanical Science & Technology,2008,22(6):1099-1110
[42] 周敏,周军,郭建国. RLV末端能量管理段轨迹在线规划与制导[J]. 宇航学报,2015,36(2):151-157
ZHOU M,ZHOU J,GUO J G. On line trajectory planning and guidance for terminal area energy management of reusable launch vehicle[J]. Journal of Astronautics,2015,36(2):151-157
[43] 颜楚雄,童轶男,宋加洪,等. 基于贝叶斯估计理论的再入飞行器气动辨识方法[J]. 中国科学:物理学力学天文学,2021,51(10):55-64
YAN C X,TONG Y N,SONG J H,et al. Aerodynamic identification method of maneuverable vehicles based on the Bayes estimation theorem[J]. SCIENTIA SINICA Physica Mechanica & Astronomica,2021,51(10):55-64
[44] 吕吉星. 高超声速飞行器气动参数在线辨识及自适应抗扰控制[D]. 哈尔滨:哈尔滨工业大学,2021.
LV J X. On-line identification of aerodynamic parameters and adaptive disturbance rejection control for hypersonic aircraft[D]. Harbin:Harbin Institute of Technology,2021.
[45] SINHA M,KUTTIERI R,CHATTERJEE S. Nonlinear and linear unstable aircraft parameter estimations using neural partial differentiation[J]. Journal of Guidance Control and Dynamics,2015,36(4):1162-1176
[46] 孟中杰,闫杰. 高超声速弹性飞行器振动模态自适应抑制技术[J]. 宇航学报,2011,32(10):2164-2168.
MENG Z J,YAN J. Adaptive modal suppression for hypersonic aeroelastic vehicle [J]. Journal of Astronautics,2011,32(10):2164-2168.
[47] ZHANG Z,LI S. Two-degree controller design for flexible missile based on H-inf interference suppression[C]//International Conference on Instrumentation,Measurement,Computer,Communication and Control. Harbin,China:[s. n. ],2012.
[48] WANG Z,WU Z,LI L,et al. A composite anti-disturbance control scheme for attitude stabilization and vibration suppression of flexible spacecrafts[J]. Journal of vibration and control:JVC,2017,23(15):2470-2477
[49] 韦常柱,琚啸哲,何飞毅,等. 运载火箭主动段自适应增广控制[J]. 宇航学报,2019,40(8):918-927
WEI C Z,JU X Z,HE F Y,et al. Ascent flight adaptive augmenting control for launch vehicles[J]. Journal of Astronautics,2019,40(8):918-927
[50] 张健松,马清华,黎海青,等. 高超声速飞行器鲁棒纵向控制技术研究[J]. 弹箭与制导学报,2020,40(2):19-22
PDF(1950 KB)

Accesses

Citations

Detail

Sections
Recommended

/