A Low-resolution Slope Compensation Method Involving Slope Change Rate

YIN Li1,2, YE Lejia1,2, DI Kaichang1,3, LIU Bin1, SUN Xiaozhu4, WANG Changhuan4, BO Zheng1,2

PDF(1647 KB)
PDF(1647 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (3) : 311-320. DOI: 10.15982/j.issn.2096-9287.2022.20210161
Topic:Mapping technique of extraterrestrial planets

A Low-resolution Slope Compensation Method Involving Slope Change Rate

  • YIN Li1,2, YE Lejia1,2, DI Kaichang1,3, LIU Bin1, SUN Xiaozhu4, WANG Changhuan4, BO Zheng1,2
Author information +
History +

Abstract

To solve the problem of slope reduction caused by the lack of high-resolution Digital Elevation Model ( DEM ) on the surface of moon, Mars and other planets, we propose a low-resolution slope compensation method involving slope change rate factors. It is an improvement on the existing linear compensation method by incorporating slope change rate into the compensation model to obtain better accuracy for slope compensation. In this paper, lunar and Martian data are used to verify the method. Several lunar and Martian low-resolution DEMs covering a variety of terrains are selected and compensated using the improved method. Then they are validated using slopes generated from the high-resolution DEMs. The results show that after applying the proposed compensation function, the compensated slopes can represent the terrain features of the lunar and Martian surface better compared to the original low-resolution slopes. Meanwhile, the proposed method considering the slope change rate is more effective than the traditional linear compensation method. Based on the improved method, the overall and hierarchical compensation models suitable for various lunar landforms are established and the low-resolution Martian slope data covering 50 km×50 km of the Tianwen-1 landing site are compensated and analyzed.

Keywords

Digital Elevation Model / slope compensation / deep space exploration / Moon / Mars

Cite this article

Download citation ▾
YIN Li, YE Lejia, DI Kaichang, LIU Bin, SUN Xiaozhu, WANG Changhuan, BO Zheng. A Low-resolution Slope Compensation Method Involving Slope Change Rate. Journal of Deep Space Exploration, 2022, 9(3): 311‒320 https://doi.org/10.15982/j.issn.2096-9287.2022.20210161

References

[1] 杨旭艳,董治宝,杨勤科,等. 基于DEM的地球与火星格状沙丘对比分析[J]. 中国沙漠,2021,41(6):1-11
YANG X Y,DONG Z B,YANG Q K,et al. Comparison of networked dunes in the Earth and the Mars based on DEM[J]. Journal of Desert Research,2021,41(6):1-11
[2] GARRIDO S,MORENO L,MARTIN F,et al. Fast Marching subjected to a Vector Field-path planning method for Mars rovers[J]. Expert Systems with Applications. 2017,78:334-346.
[3] MORAD S,KALITA H,THANGAVELAOTHAM J. Planning and navigation of climbing robots in low-gravity environments[C]//IEEE Aerospace Conference Proceedings. [S. l. ]:IEEE,2018.
[4] ROSA D D,BUSSEY B,CAHILL J T,et al. Characterization of potential landing sites for the European space agency's lunar lander project[J]. Planetary and Space Science,2012,74(1):224-246
[5] KIM J R,LIN S Y,MULLER J P,et al. Multi-resolution digital terrain models and their potential for Mars landing site assessments[J]. Planetary and Space Science,2013,85:89-105
[6] 汤国安,赵牡丹,李天文,等. DEM提取黄土高原地面坡度的不确定性[J]. 地理学报,2003,58(6):824-830
TANG G A,ZHAO M D,LI T W,et al. Modeling slope uncertainty derived from DEMs in loess plateau[J]. Acta Geographica Sinica,2003,58(6):824-830
[7] ROBINSON M S,BRYLOW S M,TSCHIMMEL M,et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview[J]. Space Science Reviews 2010,150(1-4):81-124.
[8] MCEWEN A S,ELIASON E M,BERGSTORM J W,et al. Mars reconnaissance orbiter's High Resolution Imaging Science Experiment (HiRISE)[J]. Journal of Geophysical Research-Planets,2007,112(E5):E05S02
[9] 邸凯昌,刘斌,辛鑫,等. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报,2019,48(12):1562-1574
DI K C,LIU B,XIN X,et al. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica of Cartographica Sinica,2019,48(12):1562-1574
[10] 邸凯昌,刘斌,刘召芹. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):15
DI K C,LIU B,LIU Z Q. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):15
[11] YANG Q K,DAVID J,LI R,et al. Re-scaling lower resolution slope by histogram matching[M]. Springer:Berlin Heidelberg,2008.
[12] 汤国安,刘学军,房亮,等. DEM及数字地形分析中尺度问题研究综述[J]. 武汉大学学报(信息科学版),2006(12):1059-1066
TANG G A,LIU X J,FANG L,et al. A Review on the scale issue in DEMs and digital terrain analysis[J]. Geomatics and Information Science of Wuhan University,2006(12):1059-1066
[13] 王英,龚家国,贾仰文,等. 基于不同分辨率 DEM 提取坡度值的转换关系研究[J]. 水利水电技术,2019,50(8):45-51
WANG Y,GONG J,JIA Y,et al. Study on conversion relationship of slope information extracted from different resolution DEM[J]. Water Resources and Hydropower Engineering,2019,50(8):45-51
[14] ZHANG X,DRAKE N A,AND J W,et al. Comparison of slope estimates from low resolution DEMs:scaling issues and a fractal method for their solution[J]. Earth Surface Processes and Landforms,1999,24(9):763-779
[15] 陈燕,齐清文,汤国安. 黄土高原坡度转换图谱研究[J]. 干旱地区农业研究,2004(3):180-185
CHEN Y,QI Q W,TANG G A. Research on slope-conversion-atlas in Loess Plateau[J]. Agricultural Research in the Arid Areas,2004(3):180-185
[16] WANG Y R,WU B. Improved large-scale slope analysis on Mars based on correlation of slopes derived with different baselines[C]// PRSM 2017. [S. l. ]:ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017.
[17] WU B,LI F,HU H,et al. Topographic and geomorphological mapping and analysis of the Chang'E-4 landing site on the far side of the Moon[J]. Photogrammetric Engineering and Remote Sensing,2020,86(4):247-258
[18] 何振芳,赵牡丹,韩羽. 不同地貌类型坡度提取算法的比较[J]. 水土保持通报,2008,28(6):130-133
HE Z F,ZHAO M D,HAN Y. Comparison of extracting slope algorithms in different types of landscape[J]. Bulletin of Soil and Water Conservation,2008,28(6):130-133
[19] BOUREAU Y L,PONCE J,LECUN Y. A Theoretical analysis of feature pooling in visual recognition[M]. Omnipress:Madison WI USA,2010.
[20] 段瑞玲,李庆祥,李玉和. 图像边缘检测方法研究综述[J]. 光学技术,2005,31(3):415-419
DUAN R L,LI Q X,LI Y H. Summary of image edge detection[J]. Optical Technique,2005,31(3):415-419
[21] 姚佩雯. 基于火星遥感影像的“天问一号”着陆区及非极区的尘暴时空分布研究[D]. 青岛:山东大学,2021.
YAO P W. Spatiotemporal distribution of dust dorm activity in Tianwen-1 landing area and Mars non-polar region based on Mars remote sensing images[D]. Qingdao: Shangdong University,2021.
[22] 王越,王彪,王汛,等. 火星探测任务着陆区选址和地质分析[J]. 深空探测学报(中英文),2020,7(4):371-383
WANG Y,WANG B,WANG X,et al. Analysis and selection of landing areas for Mars mission[J]. Journal of Deep Space Exploration,2020,7(4):371-383
PDF(1647 KB)

Accesses

Citations

Detail

Sections
Recommended

/