Micro Quantitative Sampler for Lunar Regolith: Design and Validation

ZHANG Zhiheng1, TANG Junyue1, ZHANG Weiwei1, SUN Feng2, LI Peng3, WANG Chu4, LIU Ziheng5, HE Huaiyu5, LIU Ranran6, MA Ruqi4, JIANG Shengyuan1

PDF(2959 KB)
PDF(2959 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (2) : 165-172. DOI: 10.15982/j.issn.2096-9287.2022.20210148
Topic:Sampling and Detection Technology of Icy Lunar Regolith

Micro Quantitative Sampler for Lunar Regolith: Design and Validation

  • ZHANG Zhiheng1, TANG Junyue1, ZHANG Weiwei1, SUN Feng2, LI Peng3, WANG Chu4, LIU Ziheng5, HE Huaiyu5, LIU Ranran6, MA Ruqi4, JIANG Shengyuan1
Author information +
History +

Abstract

Based on the environment and conditions of lunar polar regions, and the actual demand of scientific analysis instrument for regolith samples, a volatile extraction method was proposed, which coupled sampling and volatile extraction. A kind of micro quantitative sampler was designed with some sampling pieces assembled in a sampling tube to complete lunar regolith sampling. After sampling, the sample was placed in the extraction device to be heated, which heated the regolith inside it indirectly and rendered it volatile. In this paper, in view of the requirements of the sampling function of extraterrestrial objects,the working principle and key structural parameters were designed, and the verification test of the performance of lunar regolith micro-sampling was carried out. The results showed that the lower the lunar soil moisture content was, the closer the sampling amount was to the target value. Preliminary heating tests show that the scheme can heat the sample to the target temperature at a specified power. The preliminary heating test shows that the sampler can be used for future in-situ analysis of the volatile of deep space exploration in China.

Keywords

lunar regolith / in-situ analysis / micro-quantitative sampling / sampler / volatile extraction

Cite this article

Download citation ▾
ZHANG Zhiheng, TANG Junyue, ZHANG Weiwei, SUN Feng, LI Peng, WANG Chu, LIU Ziheng, HE Huaiyu, LIU Ranran, MA Ruqi, JIANG Shengyuan. Micro Quantitative Sampler for Lunar Regolith: Design and Validation. Journal of Deep Space Exploration, 2022, 9(2): 165‒172 https://doi.org/10.15982/j.issn.2096-9287.2022.20210148

References

[1] 叶培建,于登云,孙泽洲,等. 中国月球探测器的成就与展望[J]. 深空探测学报(中英文),2016,3(4):323-333
YE P J,YU D Y,SUN Z Z,et al. Achievements and prospect of Chinese lunar probes[J]. Journal of Deep Space Exploration,2016,3(4):323-333
[2] 胡智新. 月球表面水冰探测进展[J]. 航天器工程,2010,19(5):111-116
HU Z X. Progress in the detection of water ice on the lunar surface[J]. Spacecraft Engineering,2010,19(5):111-116
[3] 王超,张晓静,姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文),2020,7(3):241-247
WANG C,ZHANG X J,YAO W. Research progress on in situ exploitation of water ice resources in the lunar polar region[J]. Journal of Deep Space Exploration,2020,7(3):241-247
[4] SMITH T,HE H Y,LIU R R. The exploration of Neptune:a noble gas and volatile perspective[J]. Journal of Deep Space Exploration,2020,7(6):584-604
[5] IVANOV A V. Volatiles in lunar regolith samples:a survey[J]. Solar System Research,2014,48(2):120-138
[6] THOMSON B,BUSSEY D,NEISH C,et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar[J]. Geophysical Research Letters,2012,39(14):1-4
[7] NONEMAN S. Is there water on the Moon? NASA’s LCROSS mission:MSFC-5404[R]. Washington,DC:NASA,2007.
[8] HAYNE P O,HENDRIX A,NASH E S,et al. Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements[J]. Icarus,2015,255:58-69
[9] 叶培建,黄江川,孙泽洲,等. 中国月球探测器发展历程和经验初探[J]. 中国科学:技术科学,2014,44(6):543-558
YE P J,HUANG J C,SUN Z Z,et al. The process and experience in the development of Chinese lunar probe[J]. Scientia Sinica Technologica,2014,44(6):543-558
[10] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[11] DREYER C B,SOWERS G,WILLIAMS H. Ice mining in lunar permanently shadowed regions[C]//Space Resources Roundtable XIX/Planetary & Terrestrial Mining Sciences Symposium. Golden,CO:[s. n. ],2018.
[12] ZACNY K,CHU P,PAULSEN G,et al. Mobile in-situ water extractor(MISWE)for Mars,Moon,and asteroids in situ resource utilization[C]//AIAA Space 2012 Conference & Exposition. Pasadena,California:AIAA,2012.
[13] MITROFANOV I G,SANIN A B,BOYNTON W V,et al. Hydrogen mapping of the lunar south pole using the LRO neutron detect or experiment LEND[J]. Science,2010,330(6003):483-486
[14] 侯建文,赵晨,常立平,等. 未来月球探测总体构想[J]. 载人航天,2015,21(5):425-434
HOU J W,ZHAO C,CHANG L P,et al. General conception of future lunar exploration[J]. Manned Spaceflight,2015,21(5):425-434
[15] LIZIA P D,ZAZZERA A A,FINZI A E,et al. Planning and implementation of the on-comet operations of the instrument SD2 onboard the lander Philae of Rosetta mission[J]. Acta Astronautica,2015,125:183-195.
[16] RAMPE E B,BLAKE D F,BRISTOW T F,et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater,Mars:a review after six earth years of exploration with curiosity[J]. Geochemistry ,2020 ,80(2):125605.
[17] KATE I,GARDIFF E H,DWORKIN J P,et al. VAPoR – volatile analysis by pyrolysis of regolith - an instrument for in situ detection of water,noble gases,and organics on the Moon[J]. Planetary & Space Science,2010,58(7-8):1007-1017
[18] MAHAFFY P R,WEBSTER C R,CABANE M,et al. The sample analysis at mars investigation and instrument suite[J]. Space Science Reviews,2012,170(1):401-478
[19] SZOPA C,GOESMANN F,ROSENBAUER H,et al. The COSAC experiment of the Rosetta mission:performance under representative conditions and expected scientific return[J]. Advances in Space Research,2007,40(2):180-186
[20] GRANT H,DAVID,T,BEVAN M. Lunar source book[M]. Cambridge:Cambridge University Press,1991.
PDF(2959 KB)

Accesses

Citations

Detail

Sections
Recommended

/