Simulation Study on Echo of Earth Plasma Layer Detector

XIAO Xiong1, JIANG Chunhua1, YANG Guobin1, ZHAO Zhengyu1,2

PDF(2636 KB)
PDF(2636 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (2) : 230-236. DOI: 10.15982/j.issn.2096-9287.2022.20210127
Research Papers

Simulation Study on Echo of Earth Plasma Layer Detector

  • XIAO Xiong1, JIANG Chunhua1, YANG Guobin1, ZHAO Zhengyu1,2
Author information +
History +

Abstract

Ever of the plasmas layer and layer of magnetic plasma environment detection is mainly based on satellite in place or passive detection means,and spaceborne plasma probe as a way of active detection(active) to send and receive electromagnetic wave echo, to detect the plasma space environment provides a new means of detection,This mode can obtain the distribution structure of electron density along the propagation path in plasma space environment. This article is based on our country has not yet have access to spaceborne Plasma detector measured echo figure,put forward the combined with Plasma GCPM(Global Core Plasma Model)and the ray tracing technique to simulate the electromagnetic waves in plasmas layer and magnetospheric Plasma environment in the communication process. The ray tracing method adopted in this paper is based on the refraction index of cold plasma,considering the effect of magnetic field on the refraction index. This simulation method can obtain the structural characteristics of plasma echo through simulation,which provides a certain reference value for spaceborne plasma detector to obtain the measured plasma echo image. At the same time,it can also provide guidance for the subsequent inversion of electron density profile from measured plasma echo map,and provide important reference for the smooth implementation of deep space exploration and communication engineering.

Keywords

plasma model / RPI / ray tracing / GCPM / cold plasma

Cite this article

Download citation ▾
XIAO Xiong, JIANG Chunhua, YANG Guobin, ZHAO Zhengyu. Simulation Study on Echo of Earth Plasma Layer Detector. Journal of Deep Space Exploration, 2022, 9(2): 230‒236 https://doi.org/10.15982/j.issn.2096-9287.2022.20210127

References

[1] 段成林,张宇,韩意,等. “天问一号”太阳等离子体延迟误差分析与修正[J]. 深空探测学报(中英文),2021,8(6):592-599
DUAN C L,ZHANG Y,HAN Y,et al. Analysis of delay error correction of solar plasma region on Tianwen-1[J]. Journal of Deep Space Exploration,2021,8(6):592-599
[2] 吴季. 深空探测的现状、展望与建议[J]. 科技导报,2021,39(3):80-87
WU J. Deep space exploration:Status,expectation and suggestion[J]. Science & Technology Review,2021,39(3):80-87
[3] BOUGERET J L,KAISER M L,KELLOGG P J,et al. WAVES:The radio and plasma wave investigation on the wind spacecraft[J]. Space Science Reviews,1995,71(1):231-263
[4] GURNETT D A,PERSOON A M,RANDALL R F,et al. The polar plasma wave instrument[J]. Space Science Reviews,1995,71(1):597-622
[5] MAUK B H,FOX N J,KANEKAL S G,et al. Science objectives and rationale for the radiation belt storm probes mission[J]. Space Science Reviews,2013,179(1):3-27
[6] FUSELIER S A,BURCH J L,LEWIS W S,et al. Overview of the image science objectives and mission phases[J]. Space Science Reviews,2000,91(1-2):51-66
[7] GREEN J L,BENSON R F,FUNG S F,et al. Radio plasma imager simulations and measurements[J]. Space Science Reviews,2000,91(1):361-389
[8] REINISCH B W,HAINES D M,BIBL K,et al. The radio plasma imager investigation on the imagespacecraft[J]. Space Science Reviews,2000,91(1):319-359
[9] REINISCH B W,SALES G S,HAINES D M,et al. Radio wave active Doppler imaging of space plasma structures:arrival angle,wave polarization,and Faraday rotation measurements with the radio plasma imager[J]. Radio Science,1999,34(6):1513-1524
[10] 张旭旺,王文灿,马文起,等. 深空天线组阵的空间功率合成特性分析[J]. 深空探测学报(中英文),2020,7(4):399-406
ZHANG X W,ZHANG W C,MA W Q,et al. Analysis on space power synthesis performance of deep space antenna array[J]. Journal of Deep Space Exploration,2020,7(4):399-406
[11] GREEN J L , BENSON R F , FUNG S F , et al. Radio plasma imager simulations and measurements[J]. Space Science Reviews, 2000, 91(1): 361-389.
[12] ANGERAMI J J , THOMAS J O . Studies of planetary atmospheres: 1. the distribution of electrons and ions in the Earth's exosphere[J]. Journal of Geophysical Research, 1964, 69(21):4537-4560.
[13] KIMURA I . Effects of ions on Whistler-mode ray tracing[J]. Radio Science, 2016, 1(3): 269-283.
[14] AIKYO K , ONDOH T . Propagation of nonducted VLF waves in the vicinity of the plasmapause[J]. Journal of The Radio Research Laboratories ,1971,18(99):153-182.
[15] ROELOF E C , SIBECK D G . Magnetopause shape as a bivariate function of interplanetary magnetic-field B(z) and solar-wind dynamic pressure[J]. Journal of Geophysical Research Atmospheres, 1994, 99(A5):8787-8788.
[16] HUANG X,REINISCH B W,SONG P,et al. Developing an empirical density model of the plasmasphere using IMAGE/RPI observations[J]. Advances in Space Research,2004,33(6):829-832
[17] WEBB P A,ESSEX E A. An ionosphere-plasmasphere global electron density model[J]. Physics and Chemistry of the Earth,Part C:Solar,Terrestrial & Planetary Science,2000,25(4):301-306
[18] GULYAEVA T L,HUANG X,REINISCH B W. Ionosphere-plasmasphere model software for ISO[J]. Acta Geodaetica et Geophysica Hungarica,2002,37(2-3):143-152
[19] GALLAGHER D L,CRAVEN P D,COMFORT R H. Global core plasma model[J]. Journal of Geophysical Research Space Physics,2000,105(A8):18819-18833
[20] GOTO Y,KASAHARA Y,IDE T. Improvement of equatorial density distribution of the global core plasma model using GPS-derived TEC[J]. Radio Science,2012,47(5):1-9
[21] STIX T H. The theory of plasma waves[J]. American Journal of Physics,1962:31
[22] KUDEKI E. Applications of Radiowave Propagation[D]. Urbana-Champaign:University of Illinois at Urbana-Champaign,2010.
[23] 沈琪琪,朱德生. 短波通信[M]. 西安:西安电子科技大学出版社,1989.
[24] 熊年禄,唐存琛,李行健. 电离层物理概论[M]. 武汉:武汉大学出版社,1999.
[25] REINISCH B W,HUANG X,HAINES D M,et al. First results from the radio plasma imager on image[J]. Geophysical Research Letters,2001,28(6):1167-1170
PDF(2636 KB)

Accesses

Citations

Detail

Sections
Recommended

/