High Precision Localization of Zhurong Rover Based on Multi-source Images

WANG Jia1, LI Dafei1, HE Ximing1, CHENG Ziqing1, XU Qian1, QIAN Xueru1, WAN Wenhui2

PDF(2753 KB)
PDF(2753 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (1) : 62-71. DOI: 10.15982/j.issn.2096-9287.2022.20210124
Special Issue:Technology and Application of Deep Space Exploration

High Precision Localization of Zhurong Rover Based on Multi-source Images

  • WANG Jia1, LI Dafei1, HE Ximing1, CHENG Ziqing1, XU Qian1, QIAN Xueru1, WAN Wenhui2
Author information +
History +

Abstract

Zhurong rover landed on the southern part of Utopia Planitia of Mars on 15 May, 2021(UTC+8), marking that China successfully fulfilled the goals of “orbiting, landing on and roving around” Mars on its own for the first time. Localization of the rover is critical for supporting science and engineering operations in planetary rover missions, such as rover traverse planning and hazard avoidance. This paper introduced the localization method of Zhurong rover based on multi-source images in detail. Based on the coarse-to-fine strategy, the accurate landing positioning was achieved in the Digital Orthophoto Map (DOM) generated by the high resolution orbiter-image. Using the ground correction method combining relative localization and absolute localization, high-precision continuous localization of the rover was realized. Simulation experiment shows that the localization accuracy of the lander was within a pixel of the DOM generated by the high resolution orbiter-image, and the relative localization accuracy based on the Bundle Adjustment (BA) was better than 3% when the distance was about 10 meters. The methods have been successfully applied to the localization of Zhurong rover. The high-precision localization results greatly support the rover’s efficiently roving on Mars surface and avoiding potentially dangerous regions.

Keywords

Zhurong / multi-source image / landing localization / site localization / Dead-Reckoning

Cite this article

Download citation ▾
WANG Jia, LI Dafei, HE Ximing, CHENG Ziqing, XU Qian, QIAN Xueru, WAN Wenhui. High Precision Localization of Zhurong Rover Based on Multi-source Images. Journal of Deep Space Exploration, 2022, 9(1): 62‒71 https://doi.org/10.15982/j.issn.2096-9287.2022.20210124

References

[1] 国家航天局. 我国首次火星探测任务着陆火星取得圆满成功[EB/OL]. (2021-05-15)[2021-11-01]. http://www.cnsa.gov.cn/n6758823/n6758838/c6812001/content.html.
[2] 国家航天局. “祝融号”火星车完成既定探测任务[EB/OL]. (2021-08-17)[2021-11-01]. http://www.cnsa.gov.cn/n6758823/n6758838/c6812379/content.html.
[3] 邸凯昌,王镓,邢琰,等. 深空探测车环境感知与导航定位技术进展与展望[J]. 测绘学报,2021,50(11):1457-1468
DI K C,WANG J,XING Y,et al. Progresses and prospects of environment perception and navigation for deep space exploration rovers[J]. Acta Geodaetica et Cartographica Sinica,2021,50(11):1457-1468
[4] 邸凯昌. 勇气号和机遇号火星车定位方法评述[J]. 航天器工程,2009,18(5):1-5
DI K C. A review of Spirit and Opportunity rover localization methods[J]. Spacecraft Engineering,2009,18(5):1-5
[5] LI R,DI K,MATTHIES L H,et al. Rover localization and landing site mapping technology for 2003 Mars Exploration Rover mission[J]. Photogrammetric Engineering and Remote Sensing,2004,70(1):77-99
[6] 彭松,贾阳,陈百超. 火星车绝对定位方法选择[J]. 深空探测学报(中英文),2016,3(2):140-144
PENG S,JIA Y,CHEN B C. Selection of absolute positioning methods for Mars rover[J]. Journal of Deep Space Exploration,2016,3(2):140-144
[7] DI K C,LIU Z Q,YUE Z Y. Mars rover localization based on feature matching between ground and orbital imagery[J]. Photogrammetric Engineering and Remote Sensing,2011,77(8):781-791
[8] 宁晓琳,房建成. 一种基于UPF的月球车自主天文导航方法[J]. 宇航学报,2006,27(4):648-653
NING X L,FANG J C. A new method of autonomous celestial navigation for lunar rover and analysis of precision[J]. Journal of Astronautics,2006,27(4):648-653
[9] 李建国. 月球车位姿确定技术研究[D]. 北京:北京工业大学,2007.
[10] 欧阳自远,肖福根. 火星及其环境[J]. 航天器环境工程,2012,29(6):591-601
OUYANG Z Y,XIAO F G. The Mars and its environment[J]. Spacecraft Environment Engineering,2012,29(6):591-601
[11] DI K,XU F,WANG J,et al. Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2008,63:181-201
[12] ALI K,VANELLI C,BIESIADECKI J,et al. Attitude and position estimation on the mars exploration rovers[C]//Proceedings of the 2005 IEEE Conference on System,Man and Cybernetics. [S. l. ]:IEEE,2005.
[13] LI R,SQUYRES S W,ARVIDSON R E,et al. Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission[J]. Photogrammetric Engineering and Remote Sensing,2005,71(10):1129-1142
[14] CHENG Y,MAIMONE M,MATTHIES L. Visual odometry on the Mars exploration rovers[J]. IEEE Robotics and Automation,2006,13(2):54-62
[15] MAIMONE M,JOHNSON A,CHENG Y,et al. Autonomous navigation results from the Mars Exploration Rover Mission[J]. Springer Tracts in Advanced Robotics,2006,21:1-10
[16] JIE S,YOON J S,LEE D S,et al. Photogrammetric analysis of the Mars global surveyor mapping data[J]. Photogrammetric Engineering & Remote Sensing,2005,71(1):97-108
[17] ZOU Y L,ZHU Y,BAI Y,et al. Scientific objectives and payloads of Tianwen-1,China’s first Mars exploration mission[J]. Advances in Space Research,2020,67:812-823
[18] 邸凯昌 刘召芹,万文辉,等. 月球和火星遥感制图与探测车导航定位[M]. 北京:科学出版社,2015.
[19] LIU J J,LI C,ZHANG R Q,et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[EB/OL]. (2021-12-06)[2021-11-01]. http://doi.org/10.1038/s41550-021-01519-5.
[20] WAN W,YU T,DI K,et al. Visual localization of the Tianwen-1 lander using orbital,descent and rover images[J]. Remote Sens.,2021,13(17):3439
[21] LIANG X,CHEN W,CAO Z,et al. The navigation and terrain cameras on the Tianwen-1 Mars rover[EB/OL]. (2021-03-17)[2021-11-01]. https://doi.org/10.1007/s11214-021-00813-y.
[22] 刘召芹,万文辉,彭嫚,等. 遥感制图与导航定位技术在嫦娥三号遥操作中的应用[J]. 遥感学报,2014,18(5):995-1002
LIU Z Q,WAN W H,PENG M,et al. Remote sensing mapping and localization techniques for teleoperation of Chang'e-3 rover[J]. Journal of Remote Sensing,2014,18(5):995-1002
[23] WAN W,LIU Z,DI K,et al. A cross-site visual localization method for Yutu rover[C]// Proceedings of ISPRS Technical Commission IV Symposium. Suzhou,China:[s. n. ],2014.
[24] WANG J,ZHANG Y,DI K,et al. Localization of the Chang’e-5 lander using radio-tracking and image-based methods[J]. Remote Sensing,2021,13(4):590
[25] NAIF. Lunar Reconnaissance Orbiter Camera (LROC) instrument kernel v18. 2014[EB/OL]. (2018-04-10)[2021-11-01]. http://naif.jpl.nasa.gov/pub/naif/pds/data/lro-l-spice-6-v1.0/lrosp_1000.
[26] WU B, DONG J, WANG Y R, et al. Characterization of the candidate landing region for Tianwen-1-China’s first mission to Mars[EB/OL]. (2021-03-30)[2021-11-01]. https://doi.org/10.1029/2021EA001670.
[27] ROBINSON M. First look:Chang'e 5[EB/OL]. (2020-12-04)[2021-11-01]. https://www. lroc. asu. edu/posts/1172. 2020.
[28] Tianwen-1 lander and Zhurong rover in southern Utopia Planitia[Z]. https://www.uahirise.org/dtm/dtm.php?ID=ESP_069665_2055.
PDF(2753 KB)

Accesses

Citations

Detail

Sections
Recommended

/