Martian Landing Area Morphology Interpretation and Quantitative Analysis of the Zhurong Rover

LIU Jia1, LIU Bin2, DI Kaichang2,3, YUE Zongyu2,3, YU Tianyi4, WANG Jia4, GOU Sheng2

PDF(4652 KB)
PDF(4652 KB)
Journal of Deep Space Exploration ›› 2022, Vol. 9 ›› Issue (3) : 329-337. DOI: 10.15982/j.issn.2096-9287.2022.20210123
Topic:Mapping technique of extraterrestrial planets
Topic:Mapping technique of extraterrestrial planets

Martian Landing Area Morphology Interpretation and Quantitative Analysis of the Zhurong Rover

  • LIU Jia1, LIU Bin2, DI Kaichang2,3, YUE Zongyu2,3, YU Tianyi4, WANG Jia4, GOU Sheng2
Author information +
History +

Abstract

Tianwen-1 lander and rover successfully landed in the southern Utopia Planitia of Mars on May 15, 2021. As China's first Mars exploration mission, Tianwen-1 achieved orbiting, landing and patrolling tasks in one mission. In this paper, we apply the photogrammetry methods to produce mapping products from high-resolution orbiter remote sensing images, and to analyze the landing area environment. The environment of the landing area is not only important for the path planning and safe driving of the Mars rover, but also provides fundamental information for science research. Mainly focuses on the Tianwen-1 landing area (within the surrounding 20 km of the landing point), and utilizes the 5 m/pixel CTX DOM and Tianwen-1 DEM product data to quantitatively analysis the impact crater density, impact crater depth, depth-to-diameter ratio, etc. Further interpretation and analysis of the geomorphic feature and geological background of the landing area are conducted. The results show that there are many small craters, transverse aeolian ridge, pitted cones, structural ridges and throughs in the region, most of the impact craters on the surface of the landing area are secondary craters or degraded impact craters, with an aspect ratio between 0.001 to 0.136. In addition to in-depth analysis of the geological and geomorphological features of the landing area, the crater statistics and geomorphic feature analysis are valuable for geological evolution study of the Utopia Planitia.

Keywords

Zhurong rover / landing area / high-resolution image / impact craters

Cite this article

Download citation ▾
LIU Jia, LIU Bin, DI Kaichang, YUE Zongyu, YU Tianyi, WANG Jia, GOU Sheng. Martian Landing Area Morphology Interpretation and Quantitative Analysis of the Zhurong Rover. Journal of Deep Space Exploration, 2022, 9(3): 329‒337 https://doi.org/10.15982/j.issn.2096-9287.2022.20210123

References

[1] WAN W H,YU T Y,DI K C,et al. Visual localization of the Tianwen-1 lander using orbital,descent and rover images[J]. Remote Sensing,2021,13(17):3439-3450
[2] ZOU Y,ZHU Y,BAI Y,et al. Scientific objectives and payloads of Tianwen-1,China’s first Mars exploration mission[J]. Advances in Space Research,2021,67(2):812-823
[3] BARLOW N G. Mars:an introduction to its interior,surface and atmosphere[M]. UK:Cambridge university press,2008.
[4] 肖龙. 行星地质学[M]. 北京:地质出版社,2013.
[5] CUTTS J A,SMITH R S U. Eolian deposits and dunes on Mars[J]. Journal of Geophysical Research:1973,78(20):4139-4154.
[6] SCOTT D H,RICE J W,DOHM J M. Martian paleolakes and 753 waterways:exobiological implications[J]. Origins of 754 Life And Evolution of The Biosphere,1991,21(3):189-198
[7] CARTER J,POULET F,BIBRING J P,et al. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers:updated global view[J]. Journal of Geophysical Research,2013,118:1-28
[8] BISHOP J L. Hydrated minerals on Mars. Water on Mars and life. [M]. Berlin:Springer,2005.
[9] 芶盛,岳宗玉,邸凯昌,等. 火星表面含水矿物探测进展[J]. 遥感学报,2017,21(4):531-548
GOU S,YUE Z Y,DI K C,et al. Advances in aqueous minerals detection on Martian surface[J]. Journal of Remote Sensing,2017,21(4):531-548
[10] 邸凯昌,刘召芹,万文辉,等. 月球与火星遥感制图与探测车导航定位[M]. 北京:科学出版社,2015.
[11] 邸凯昌,刘斌,刘召芹,等. 火星遥感制图技术回顾与展望[J]. 航天器工程,2018,27(1):10-24
DI K C,LIU B,LIU Z Q,et al. Review and prospect of Mars mapping technique using remote sensing data[J]. Spacecraft Engineering,2018,27(1):10-24
[12] SKINNER J A,HARE T M,TANAKA K L. Digital renovation of the atlas of Mars 1:15,000,000-scale global geologic series maps[J]. Lunar and Planetary Science (Abstract),2006,4:2331
[13] TANAKA K L,SKINNER J A,JR DOHM J M,et al. Geologic map of Mars[EB/OL]. [2021-11-02]. http://pubs.usgs.gov/sim/3292.
[14] TANAKA K L. The stratigraphy of Mars[J]. Journal of Geophysical Research Solid Earth,1986,91(B13):E139-E158
[15] TANAKA K L,SCOTT D H,GREELEY R. Global stratigraphy[M]. Arizona: University of Arizona Press,1992:345-382.
[16] ZUREK R W,SMREKAR S E. An overview of the Mars Reconnaissance Orbiter (MRO) science mission[J]. Journal of Geophysical Research:2007,112(E5):1-9.
[17] MALIN M C,BELL J F,CANTOR B A,et al. Context camera investigation on board the Mars reconnaissance orbiter[J]. Journal of Geophysical Research,2007,112(E5):E05S04
[18] LIU Z Q,YUE Z Y,MICHAEL G,et al. A global database and statistical analyses of (4) vesta craters[J]. Icarus:2018,311:242-257.
[19] WARD A W. Yardangs on Mars:evidence of recent wind erosion[J]. Journal of Geophysical Research:1979,8147-8166.
[20] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展,2019,34(10):1001-1014
DONG Z B,LV P. Aeolian geomorphology in the era of deep space exploration[J]. Advances in Earth Science,2019,34(10):1001-1014
[21] 李超,董治宝,吕萍,等. 火星沙丘地貌的形态学窥究[J]. 科学通报,2020,65:80-90
LI C,DONG Z B,LV P,et al. A morphological insight into the Martian dune geomorphology[J]. Chin Sci Bull,2020,65:80-90
[22] 芶盛,岳宗玉,邸凯昌,等. 乌托邦平原祝融号火星车着陆区地质特征遥感分析[J]. 遥感学报,2021(预印本).
GOU S,YUE Z Y,DI K C,et al. Geological characteristics of the landing area of the Zhurong rover at Utopia Planitia,Mars[J]. Journal of Remote Sensing,2021(Preprint).
[23] HIESINGER H,ROHKAMP D,STURM S,et al. Geology,ages,morphology,and morphometry of thumbprint terrain in isidis planitia,Mars[C]//Proceedings of the 40th Lunar and Planetary Science Conference. Woodlands,Texas,USA:Lunar and Planetary Institute,2009.
[24] OEHLER D Z,ALLEN C C. Evidence for pervasive mud volcanism in Acidalia Planitia,Mars[J]. Icarus,2010,208(2):738636-657
[25] KOMATSU G,OKUBO C H,WRAY J J,et al. Small edifice features in Chryse Planitia,Mars:assessment of a mud volcano hypothesis[J]. Icarus,2016,268:56-75
[26] NEUKUM G. Meteorite bombardment and dating of planetary surfaces: NASA-TM-77558[R]. USA: NASA, 1984.
[27] NEUKUM G,IVANOV B A,HARTMANN W K. Crater-ring records in the inner solar system in relation to the lunnar reference system[J]. Space science review,2001,96(1-4):55-86
[28] NEUKUM G,BASILEVSKY A T,KNEISSl T,et al. The geologic evolution of Mars:episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites[J]. Earth and Planetary Science Letters,2010,294:204-222
[29] MICHAEL G G,NEUKUM G. Planetary surface dating from crater size–frequency distribution measurements:partial resurfacing events and statistical age uncertainty[J]. Earth and Planetary Science Letters,2010,294:223-229
[30] MICHAEL G G,KNEISSL T,NEESEMANN A. Planetary surface dating from crater size-frequency distribution measurements:poisson timing analysis[J]. Icarus:2016,277:279-285.
[31] WERNER S C,TANAKA K L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars[J]. Icarus,2011,215(2):603-607
[32] PIKE R J. Control of crater morphology by gravity and target type-Mars,Earth,Moon[C]// Lunar and Planetary Science Conference Proceedings. USA: NASA, 1980.
[33] DAUBAR I J,ATWOOD-STONE C,BYME S,et al. The morphology of small fresh craters on Mars and the Moon[J]. Joumal of Geophysical Research:Planets,2014,119(12):2620-2639
[34] THOMSON B J,HEAD J W. Utopia basin,Mars' characterization of topography and morphology and assessment of the origin and evolution of basin internal structure[J]. Journal of Geophysical Research,2001:23209-23230
[35] PIKE R J. Control of crater morphology by gravity and target Type-Mars,Earth,Moon[C]//Lunar and Planetary Science Conference Proceedings. USA:U. S. Geological Survey,1980.
[36] SHOLES S F,DICKESON I J,MONTGOMERY D R,et al. Where are Mars’ Hypothesized ocean shorelines? large lateral and topographic offsets between different versions of paleoshoreline Maps[J]. Journal of Geophysical Research:Planets,2021,126(5):1-8
PDF(4652 KB)

Accesses

Citations

Detail

Sections
Recommended

/