PDF(2784 KB)
A Backtracking Method Based on Frame Synchronization for Deep Space Super Low Bit Rate Data
- CHEN Shaowu1, LIU Min1, WANG Jinwen2, QIANG Li3, LU Ouxin4
Author information
+
1. Beijing Institute of Tracking and Telecommunication Technology,Beijing 100094,China;
2. Beijing Institute of Telemetry Technology,Beijing 100094, China;
3. Xi’an Satellite Control Center, Xi’an 721000, China;
4. Southwest China Institute of Electronic Technology, Chengdu 610036, China
Show less
History
+
Received |
Revised |
Published |
18 Oct 2021 |
09 Nov 2021 |
20 Dec 2021 |
Issue Date |
|
20 Dec 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 张乃通, 李晖,张钦宇. 深空探测通信技术发展趋势及思考[J]. 宇航学报,2007,28(4):786-793
ZHANG N T, LI H, ZHANG Q Y. Thought and development trend in deep space exploration and communication[J]. Journal of Astronautics,2007,28(4):786-793
[2] 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[3] 刘嘉兴. 深空测控通信的特点和主要技术问[J]. 飞行器测控学报,2005,24(6):1-8
LIU J X. Features and main technical issues in deep space TT&C and telecommunication systems[J]. Journal of Spacecraft TT&C Technology,2005,24(6):1-8
[4] 饶启龙. 深空测控通信网技术的发展与展望[J]. 信息与电子工程,2011,9(6):669-674
RAO Q L. Development and outlook of deep space TT&C and communication network[J]. Information and Electronic Engineering,2011,9(6):669-674
[5] 吴伟仁,刘旺旺, 唐玉华,等. 深空探测几项关键技术及发展趋势[J]. 国际太空,2013,420:43-51
WU W R, LIU W W,TANG Y H, et al. Development trend and key technology of deep space exploration[J]. Space International,2013,420:43-51
[6] 吴伟仁, 于登云,黄江川,等. 太阳系边际探测研究[J]. 中国科学:信息科学,2019,49:1-16
WU W R, YU D Y,HUANG J C, et al. Exploring the solar system boundary[J]. Science Sinica Information,2019,49:1-16
[7] 田百义,王大轶,张相宇,等. 太阳系边际探测飞行任务规划[J]. 宇航学报,2021,42(3):284-294
TIAN B Y, WANG D Y, ZHANG X Y, et al. Flight mission planning for Solar system boundary exploration[J]. Journal of Astronautics,2021,42(3):284-294
[8] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 4 Voyager telecommunication[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/Descanso4--Voyager_new.pdf.
[9] NASA(Jet Propulsion Laboratory). DESCANSO design and performance summary series article 14 Mars Science Laboratory telecommunications system design[EB/OL]. (2021-10-18). https://descanso.jpl.nasa.gov/DPSummary/Descanso14_MSL_Telecom.pdf.
[10] CCSDS. CCSDS 130.1-G-3——informational report TM synchronization and channel coding-summary of concept and rationale[R]. [s. n]:CCSDS,2020.
[11] CCSDS. CCSDS 131.0-B-3, TM synchronization and channel coding[S]. [s. n]: CCSDS, 2009.
[12] CCSDS. CCSDS 131.1-O-2, low density parity check codes for use in near-earth and deep space applications[S]. [s. n]:CCSDS, 2008.
[13] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 3 Cassini Orbiter/Huygens probe telecommunications[EB/OL].(2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/Descanso3--Cassini2.pdf.
[14] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 15 Phoenix telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/PhxArticle_RC101013DocX_COMPRESSED_AcronFixBU.pdf.
[15] NASA(Jet Propulsion Laboratory). DESCANSO design and performance summary series article 6 Odyssey telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/odyssey_telecom.pdf.
[16] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 12 Mars Reconnaissance Orbiter telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/MRO_092106.pdf.
[17] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 9 deep impact flyby and impactor telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/di_article_cmp20050922.pdf.
[18] 李臣, 朱本霞, 苏彦,等. 深空任务数据接收最佳帧同步仿真与结果分析[J]. 天文与天体物理, 2013(1):1-8.
LI C, ZHU B X, SU Y, et al . Discussion and analysis of optimum frame synchronization simulation method for data receiving in deep space mission[J]. Astronomy and Astrophysics,2013(1) : 1-8.
[19] 张玉花, 王献忠,褚英志, 等. 我国首次自主火星探测任务中环绕器的研制与实践[J]. 上海航天(中英文),2020,37(5):1-9
ZHANG Y H,WANG X Z, CHU Y Z, et al. Development and practice of the orbiter in China’s first Mars exploration mission[J]. Aerospace Shanghai,2020,37(5):1-9
[20] 腾讯网. “天问一号”: 跨越4亿千米去火星[EB/OL].( 2020-07-20)[2021-09-24]. https://new.qq.com/rain/a/20200719 a0bjne00.
[21] 中国军网-解放军报. 这次,中国来了!“天问一号”:中国首次火星之旅[P/OL]. (2020-07-20)[2021-09-24]. http://www.81.cn/sydbt/2020/07/10/content_9851137.htm.
[22] YE P J,SUN Z Z, RAO W, et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences,2017,60:649-557
[23] 火星学会. 收藏!2020年中国火星任务叶培建院士PPT(火星一号)[EB/OL]. (2020-01-22)[2020-08-30]. https://mp.weixin.qq.com/s/06D9UK3J8hpCXgOtIzKO-A.
[24] 吴伟仁,李海涛,李赞, 等. 中国深空测控网现状与展望[J]. 中国科学:信息科学,2020,50(1):87-127
WU W R, LU H T, LU Z, et al. Status and prospect of China’s deep space TT&C network[J]. Science Sinica Information,2020,50(1):87-127