A Backtracking Method Based on Frame Synchronization for Deep Space Super Low Bit Rate Data

CHEN Shaowu1, LIU Min1, WANG Jinwen2, QIANG Li3, LU Ouxin4

PDF(2784 KB)
PDF(2784 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (6) : 608-613. DOI: 10.15982/j.issn.2096-9287.2021.20210122
Topic:Lunar and planetary TT&C Technology
Topic:Lunar and planetary TT&C Technology

A Backtracking Method Based on Frame Synchronization for Deep Space Super Low Bit Rate Data

  • CHEN Shaowu1, LIU Min1, WANG Jinwen2, QIANG Li3, LU Ouxin4
Author information +
History +

Abstract

Due to the super low telemetry bit rate and limited transmitting time for deep space mission,the total received telemetry data is precious; it is necessary to obtain as much telemetry data as possible,and decrease overhead and increase the efficiency of data receiving. A backtracking method(BTM)for deep space super low bit rate frame synchronization data was proposed in this paper for the data loss in the process of three-state transfer in traditional frame synchronization. The data frames in the process of three-state transfer in frame synchronization were backtracked,and multiple valid telemetry data frames were obtained by using the valid frame synchronization information. The method was successfully applied to the super low telemetry data receiving for orbiter and rover in Tianwen-1 Mars exploration mission. The result shows that 2~4 more valid data frames were obtained with the method proposed compared with the traditional method,and transfer efficiency was improved by 13%~40%. More valid data frames and higher transfer efficiency could be obtained by using the method. The method proposed in this paper can be particularly useful for deep space super low bit rate telemetry data receiving,and could be used in the further exploration of asteroids,Jupiter and the boundary of the solar system.

Keywords

deep space exploration / very low bit rate / frame synchronization / transfer efficiency / data backtracking

Cite this article

Download citation ▾
CHEN Shaowu, LIU Min, WANG Jinwen, QIANG Li, LU Ouxin. A Backtracking Method Based on Frame Synchronization for Deep Space Super Low Bit Rate Data. Journal of Deep Space Exploration, 2021, 8(6): 608‒613 https://doi.org/10.15982/j.issn.2096-9287.2021.20210122

References

[1] 张乃通, 李晖,张钦宇. 深空探测通信技术发展趋势及思考[J]. 宇航学报,2007,28(4):786-793
ZHANG N T, LI H, ZHANG Q Y. Thought and development trend in deep space exploration and communication[J]. Journal of Astronautics,2007,28(4):786-793
[2] 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1):5-17
WU W R,YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration,2014,1(1):5-17
[3] 刘嘉兴. 深空测控通信的特点和主要技术问[J]. 飞行器测控学报,2005,24(6):1-8
LIU J X. Features and main technical issues in deep space TT&C and telecommunication systems[J]. Journal of Spacecraft TT&C Technology,2005,24(6):1-8
[4] 饶启龙. 深空测控通信网技术的发展与展望[J]. 信息与电子工程,2011,9(6):669-674
RAO Q L. Development and outlook of deep space TT&C and communication network[J]. Information and Electronic Engineering,2011,9(6):669-674
[5] 吴伟仁,刘旺旺, 唐玉华,等. 深空探测几项关键技术及发展趋势[J]. 国际太空,2013,420:43-51
WU W R, LIU W W,TANG Y H, et al. Development trend and key technology of deep space exploration[J]. Space International,2013,420:43-51
[6] 吴伟仁, 于登云,黄江川,等. 太阳系边际探测研究[J]. 中国科学:信息科学,2019,49:1-16
WU W R, YU D Y,HUANG J C, et al. Exploring the solar system boundary[J]. Science Sinica Information,2019,49:1-16
[7] 田百义,王大轶,张相宇,等. 太阳系边际探测飞行任务规划[J]. 宇航学报,2021,42(3):284-294
TIAN B Y, WANG D Y, ZHANG X Y, et al. Flight mission planning for Solar system boundary exploration[J]. Journal of Astronautics,2021,42(3):284-294
[8] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 4 Voyager telecommunication[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/Descanso4--Voyager_new.pdf.
[9] NASA(Jet Propulsion Laboratory). DESCANSO design and performance summary series article 14 Mars Science Laboratory telecommunications system design[EB/OL]. (2021-10-18). https://descanso.jpl.nasa.gov/DPSummary/Descanso14_MSL_Telecom.pdf.
[10] CCSDS. CCSDS 130.1-G-3——informational report TM synchronization and channel coding-summary of concept and rationale[R]. [s. n]:CCSDS,2020.
[11] CCSDS. CCSDS 131.0-B-3, TM synchronization and channel coding[S]. [s. n]: CCSDS, 2009.
[12] CCSDS. CCSDS 131.1-O-2, low density parity check codes for use in near-earth and deep space applications[S]. [s. n]:CCSDS, 2008.
[13] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 3 Cassini Orbiter/Huygens probe telecommunications[EB/OL].(2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/Descanso3--Cassini2.pdf.
[14] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 15 Phoenix telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/PhxArticle_RC101013DocX_COMPRESSED_AcronFixBU.pdf.
[15] NASA(Jet Propulsion Laboratory). DESCANSO design and performance summary series article 6 Odyssey telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/odyssey_telecom.pdf.
[16] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 12 Mars Reconnaissance Orbiter telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/MRO_092106.pdf.
[17] NASA (Jet Propulsion Laboratory). DESCANSO design and performance summary series article 9 deep impact flyby and impactor telecommunications[EB/OL]. (2021-10-13). https://descanso.jpl.nasa.gov/DPSummary/di_article_cmp20050922.pdf.
[18] 李臣, 朱本霞, 苏彦,等. 深空任务数据接收最佳帧同步仿真与结果分析[J]. 天文与天体物理, 2013(1):1-8.
LI C, ZHU B X, SU Y, et al . Discussion and analysis of optimum frame synchronization simulation method for data receiving in deep space mission[J]. Astronomy and Astrophysics,2013(1) : 1-8.
[19] 张玉花, 王献忠,褚英志, 等. 我国首次自主火星探测任务中环绕器的研制与实践[J]. 上海航天(中英文),2020,37(5):1-9
ZHANG Y H,WANG X Z, CHU Y Z, et al. Development and practice of the orbiter in China’s first Mars exploration mission[J]. Aerospace Shanghai,2020,37(5):1-9
[20] 腾讯网. “天问一号”: 跨越4亿千米去火星[EB/OL].( 2020-07-20)[2021-09-24]. https://new.qq.com/rain/a/20200719 a0bjne00.
[21] 中国军网-解放军报. 这次,中国来了!“天问一号”:中国首次火星之旅[P/OL]. (2020-07-20)[2021-09-24]. http://www.81.cn/sydbt/2020/07/10/content_9851137.htm.
[22] YE P J,SUN Z Z, RAO W, et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China Technological Sciences,2017,60:649-557
[23] 火星学会. 收藏!2020年中国火星任务叶培建院士PPT(火星一号)[EB/OL]. (2020-01-22)[2020-08-30]. https://mp.weixin.qq.com/s/06D9UK3J8hpCXgOtIzKO-A.
[24] 吴伟仁,李海涛,李赞, 等. 中国深空测控网现状与展望[J]. 中国科学:信息科学,2020,50(1):87-127
WU W R, LU H T, LU Z, et al. Status and prospect of China’s deep space TT&C network[J]. Science Sinica Information,2020,50(1):87-127
PDF(2784 KB)

Accesses

Citations

Detail

Sections
Recommended

/