PDF(3190 KB)
Topic:Lunar and planetary TT&C Technology
Topic:Lunar and planetary TT&C Technology
Design of Multi-Station Frequency Transfer System for VLBI Deep Space TT&C Based on Single Fiber
- CHANG Jie1,2, WANG Jinqing1,3,4, SHU Fengchun1, JIANG Yongchen1
Author information
+
1. Shanghai Astronomical Observatory,Chinese Academy of Sciences, Shanghai 200030,China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Radio Astronomy, Chinese Academy of Sciences,Nanjing 210008, China;
4. Shanghai Key Laboratory of Space Navigation and Positioning Techniques, Shanghai 200030, China
Show less
History
+
Received |
Revised |
Published |
21 Jun 2021 |
15 Sep 2021 |
20 Dec 2021 |
Issue Date |
|
20 Dec 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] 吴伟仁,刘继忠,唐玉华,等. 中国探月工程[J]. 深空探测学报(中英文),2019,6(5):405-416
WU W R,LIU J Z,TANG Y H,et al. China lunar exploration program[J]. Journal of Deep Space Exploration,2019,6(5):405-416
[2] 洪晓瑜,张秀忠,郑为民,等. VLBI技术研究进展及在中国探月工程的应用[J]. 深空探测学报(中英文),2020,7(4):321-331
HONG X Y,ZHANG X Z,ZHENG W M,et al. Research progress of VLBI technology and application to China lunar exploration project[J]. Journal of Deep Space Exploration,2020,7(4):321-331
[3] 吴伟仁,李海涛,李赞,等. 中国深空测控网现状与展望[J]. 中国科学:信息科学,2020,50(1):93-114
WU W R,LI H T,LI Z,et al. Status and prospect of China’s deep space TT&C network[J]. SCIENTIA SINICA Informationis,2020,50(1):93-114
[4] NIELL A,BARRETT J,BURNS A,et al. Demonstration of a broadband very long baseline interferometer system:a new instrument for high-precision space geodesy[J]. Radio Science,2018,53(10):1269-1291
[5] 杨文哲,杨宏雷,赵环,等. 光纤时频传递技术进展[J]. 时间频率学报,2019(3):214-223.
YANG W Z,YANG H L,ZHAO H,et al. Technical progress of fiber-based time and frequency transfer[J]. Journal of Time and Frequency,2019(3):214-223.
[6] CALONICO D,BERTACCO E K,CALOSSO C E,et al. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link[J]. Applied Physics B,2014,117(3):979-986
[7] DROSTE S,OZIMEK F,UDEM T,et al. Optical-frequency transfer over a single-span 1 840 km fiber link[J]. Physical Review Letters,2013,111(11):110801
[8] 刘涛,刘杰,邓雪,等. 光纤时间频率信号传递研究[J]. 时间频率学报,2016,39(3):207-215
LIU T,LIU J,DENG X,et al. Research on fiber-based time and frequency transfer[J]. Journal of Time and Frequency,2016,39(3):207-215
[9] CHEN X,LU J,CUI Y,et al. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link[J]. Scientific Reports,2015(5):18343
[10] WANG B,GAO C,CHEN W L,et al. Precise and continuous time and frequency synchronisation at the 5×10?19 accuracy level[J]. Scientific Reports,2012,2(2):556
[11] GAO C,WANG B,CHEN W L,et al. Fiber-based multiple-access ultrastable frequency dissemination[J]. Optics Letters,2012,37(22):4690-4692
[12] 王锦清,江永琛,苟伟,等. 地面稳相频标传输系统设计和测试[J]. 天文学报,2014(5):427-436
WANG J Q,JIANG Y C,GOU W,et al. Design and testing of a ground-based system for phase stabilized standard frequency transmission[J]. Acta Astronomica Sinica,2014(5):427-436
[13] 江永琛,王锦清,苟伟,等. 基于光纤传输的1.5 GHz信号的稳相系统设计与测试[J]. 时间频率学报,2017,40(3):137-145
JIANG Y C,WANG J Q,GOU W,et al. Design and test of a 1.5 GHz phase stabilization system based on optical fiber transmission[J]. Journal of Time and Frequency,2017,40(3):137-145
[14] YANG N,QIU Q,SU J,et al. Research on the temperature characteristics of optical fiber refractive index[J]. Optik,2014,125(19):5813-5815
[15] JIN L,ZHANG W,HAO Z,et al. An embedded FBG sensor for simultaneous measurement of stress and temperature[J]. IEEE Photonics Technology Letters,2005,18(1):154-156
[16] THOMPSON A R,MORAN J M,SWENSON G,et al. Interferometry and synthesis in radio astronomy[M]. Berlin:Springer,2017.
[17] TAKAHASHI F, KONDO T, TAKAHASHI Y, et al. Very long baseline interferometer[J]. Electronic Systems Magazine IEEE, 2002,17(8): 43-44.
[18] 舒逢春. 人造卫星实时射电干涉测量方法研究[D]. 上海:中国科学院上海天文台,2008.
SHU F C. Study on the real time application of radio interferometry for satellite tracking[D]. Shanghai:Shanghai Astronomical Observatory,Chinese Academy of Sciences,2008.
[19] LITTLE A G. A phase-measuring scheme for a large radio telescope[J]. IEEE Transactions on Antennas and Propagation,1969,17(5):547-550
[20] SIGMAN E H. Phase calibration generator[C]//The Telecommunications and Data Acquisition Report. Pasadena:Jet Propulsion Laboratory,1988:89-104.
[21] MCCOOL R,BENTLEY M,GARRINGTON S,et al. Phase transfer for radio astronomy interferometers,over installed fiber networks,using a round-trip correction system[C]//Annual Precise Time and Time Interval Systems and Applications Meeting. Reston:Naval Observatory,2008:107-116.
[22] PRIMAS L E,LUTES G F,SYDNOR R L. Stabilized fiber optic frequency distribution system[C]// Telecommunications and Data Acquisition Progress Report. Pasadena:Jet Propulsion Laboratory,1989:88-97.
[23] SHILLUE B. ALMA LO distribution round trip phase correction[EB/OL]. (2002-11-14)[2021-06-21]. http://www.alma.nrao.edu/memos/html-memos/alma443/memo443.pdf.
[24] OH H J,KONDO T,LEE J,et al. Round-trip system available to measure path length variation in korea VLBI system for geodesy[C]//Proceedings from the 2010 General Meeting. [S. l.]:International VLBI Service for Geodesy and Astronomy,2010:449-453.
[25] NAPIER P J,THOMPSON A R,EKERS R D. The very large array:design and performance of a modern synthesis radio telescope[J]. Proceedings of the IEEE,1983,71(11):1295-1320
[26] DENG T,MA M,LIU Q,et al. High-precision carrier tracking algorithm for extremely weak and high-dynamic signals[J]. Radio Science,2021,56(5):e2021RS007277.