Performance Analysis and Experimental Study of Tianwen-1 Parachute Material

HUANG Mingxing, GAO Shuyi, WANG Liwu, WANG Wenqiang, LI Jian

PDF(2178 KB)
PDF(2178 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (5) : 478-485. DOI: 10.15982/j.issn.2096-9287.2021.20210025
Topic:Deep Space Extreme Environment Protection and New Materials

Performance Analysis and Experimental Study of Tianwen-1 Parachute Material

  • HUANG Mingxing, GAO Shuyi, WANG Liwu, WANG Wenqiang, LI Jian
Author information +
History +

Abstract

Parachute is an important way for a Mars rover to decelerate. As the application conditions of Mars parachutes are very different from those of conventional parachutes. In this article, the environmental and mechanical conditions experienced by Tianwen-1 Mars parachute were analyzed, and by combining the successful landings of Mars parachutes abroad and the development of textile materials, the application of Mars parachute materials was introduced. Then, the weight characteristics of the new Mars parachute material and the influence of humidity on the parachute mass were analyzed. Finally, through parachute materials’ mechanical experiments with high and low temperature environments, high-density packaging, and long-term on-orbit storage conditions, the strength change parameters of the Mars parachute material on Tianwen-1 were obtained. The results indicate that the strength of the parachute material can still meet the working requirements of Mars after experiencing various environmental conditions. This article can provide a reference for the design of parachute materials in subsequent deep space explorations.

Keywords

Tianwen-1 / parachute material / long-term storage / high-density packaging / temperature environment / adaptability

Cite this article

Download citation ▾
HUANG Mingxing, GAO Shuyi, WANG Liwu, WANG Wenqiang, LI Jian. Performance Analysis and Experimental Study of Tianwen-1 Parachute Material. Journal of Deep Space Exploration, 2021, 8(5): 478‒485 https://doi.org/10.15982/j.issn.2096-9287.2021.20210025

References

[1] HUSSONG J, LAU R. The Viking Mars lander decelerator system[C]//3th Aerodynamic Deceleration Systems Conference. Dayton, OH, USA: AIAA, 1970.
[2] WITKOWSKI A. Mars pathfinder parachute system performance[C]//15th Aerodynamic Decelerator Systems Technology Conference. Toulouse, France: AIAA, 1999.
[3] WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview[C]//17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Monterey, California: AIAA, 2003.
[4] SENGUPTA A, WITKOWSKI A, ROWAN J, et al. Overview of the Mars science laboratory parachute decelerator system[C]//19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Williamsburg, VA: AIAA, 2007.
[5] GROVER M R, CICHY B D, DESAI P N. Overview of the phoenix entry, descent, and landing system architecture[J]. Journal of Spacecraft and Rockets,2011,48(5):706-712
[6] UNDERWOOD J, BOWN N. An entry, descent and landing system for the beagle2 Mars mission[C]//16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Boston, MA, USA: AIAA, 2001.
[7] 饶炜, 孙泽洲, 孟林智, 等. 火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报(中英文),2016,3(2):121-128
RAO W, SUN Z Z, MENG L Z, et al. Analysis and design for the Mars entry, descent and landing mission[J]. Journal of Deep Space Exploration,2016,3(2):121-128
[8] KNACKE T W. Parachute recovery systems design manual[M]. Santa Barbara : CA, Para Publishing, 1992.
[9] 高树义, 戈嗣诚, 梁艳. 火星盘缝带伞跨声速风洞试验研究[J]. 中国空间科学技术,2015(4):69-75
GAO S Y, GE S C, LIANG Y. Research on transonic wind tunnel tests of Mars disk-gap-band parachutes[J]. Chinese Space Science and Technology,2015(4):69-75
[10] 耿言, 周继时, 李莎, 等. 我国首次火星探测任务[J]. 深空探测学报(中英文), 2018, 5(5): 399-405.
GENG Y, ZHOU J S, LI S, et al. A brief introduction of the first Mars exploration mission in China[J]. Journal of Deep Space Exploration, 2018, 5(5): 399-405.
[11] ECKSTROM C V. Development and testing of the disk-gap-band parachute used for low dynamic pressure applications at ejection altitudes at or above 200, 000 feet[R]. USA: NASA, 1966.
[12] ECKSTROM C, MURROW H. Description of a new parachute designed for use with meteorological rockets and a consideration of improvements in meteorological measurements[C]//Conference on Aerospace Meteorology. Los Angeles, CA, USA: AIAA, 1966.
[13] 黄明星, 王文强, 李健, 等. 基于有效透气量对火星降落伞气动力系数预测分析[J]. 宇航学报, 2020, 41(9): 1132-1140.
HUANG M X, WANG W Q, LI J, et al. Prediction and analysis of aerodynamic coefficient of parachute under Mars conditions based on effective porosity[J].Journal of Astronautics, 2020, 41(9): 1132-1140.
[14] KNACKE T. Parachute recovery systems design manual[M]. USA, China Lake: Recovery Systems Division Aerosystems Departement, 1991.
[15] 姚穆. 纺织材料学[M]. 北京: 中国纺织出版社, 2015.
[16] FALLON I E. System design overview of the Mars pathfinder parachute decelerator subsystem[C]//14th Aerodynamic Decelerator Systems Technology Conference. USA: AIAA, 1997.
[17] WITKOWSKI A. Mars scout phoenix parachute decelerator system program overview[C]//2007 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2007.
[18] SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. An overview of the mars science laboratory parachute decelerator system[C]//2007 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2007.
[19] WITKOWSKI A, KANDIS M, KIPP D, et al. Mars insight parachute system performance[C]//AIAA Aviation 2019 Forum. Dallas, Texas: AIAA, 2019.
[20] TUTT B A, LOWRY C W, CLARK I G, et al. Design overview of the strengthened Mars 2020 parachute assembly[C]//AIAA Aviation 2019 Forum. Dallas, Texas: AIAA, 2019.
PDF(2178 KB)

Accesses

Citations

Detail

Sections
Recommended

/