General Scheme and Key Technology of Long March 5 Launch Vehicle Booster

HUANG Shuai, DING Yifan, JIAO Zhen, WANG Chunlin, ZHANG Xinyao

PDF(2119 KB)
PDF(2119 KB)
Journal of Deep Space Exploration ›› 2021, Vol. 8 ›› Issue (4) : 362-371. DOI: 10.15982/j.issn.2096-9287.2021.20210012
Topic:Technology of Long March 5 Launch Vehicle
Topic:Technology of Long March 5 Launch Vehicle

General Scheme and Key Technology of Long March 5 Launch Vehicle Booster

  • HUANG Shuai, DING Yifan, JIAO Zhen, WANG Chunlin, ZHANG Xinyao
Author information +
History +

Abstract

The Long March 5(LM-5) series launch vehicle is the new generation large launch vehicle of China,which undertakes China’s lunar exploration project,deep space exploration and other national key projects. LM-5 series launch vehicle booster is the largest booster in China. The booster provides 90% takeoff thrust for the LM-5 launch vehicle. In order to ensure the successful development of the booster,the overall scheme and a number of key technologies of the booster are put forward. The engineering and technical problems of these key technologies are overcome in the development process,which lays a solid foundation and accumulates rich experience for the success of the LM-5 launch vehicle and the large cryogenic launch vehicle. Up to now,LM-5 series launch vehicle boosters have successfully completed flight tests,promoting the development and application of follow-up boosters.

Keywords

LM-5 / launch vehicle / booster / general scheme / key technology

Cite this article

Download citation ▾
HUANG Shuai, DING Yifan, JIAO Zhen, WANG Chunlin, ZHANG Xinyao. General Scheme and Key Technology of Long March 5 Launch Vehicle Booster. Journal of Deep Space Exploration, 2021, 8(4): 362‒371 https://doi.org/10.15982/j.issn.2096-9287.2021.20210012

References

[1] 李东,王珏,何巍,等. 长征五号运载火箭总体方案及关键技术[J]. 导弹与航天运载技术,2017(3):1-5
LI D,WANG J,HE W,et al. The general scheme and key technologies of CZ-5 launch vehicle[J]. Missiles And Space Vehicles,2017(3):1-5
[2] 何巍,刘伟,龙乐豪. 重型运载火箭及其应用探讨[J]. 导弹与航天运载技术,2011(1):1-5
HE W,LIU W,LONG L H. Heavy launch vehicle and its application[J]. Missiles and Space Vehicles,2011(1):1-5
[3] 张智,容易,秦曈,等. 重型运载火箭总体技术研究[J]. 载人航天,2017,23(1):1-7
ZHANG Z,RONG Y,QIN T,et al. Research on overall technology of heavy launch vehicle[J]. Manned Spaceflight,2017,23(1):1-7
[4] 刘竹生. 运载火箭总体设计多学科优化方法发展及展望[J]. 深空探测学报(中英文),2017,4(2):1-6
LIU Z S. An overview of multidisciplinary optimization method in launch vehicle design[J]. Journal of Deep Space Exploration,2017,4(2):1-6
[5] 梅勇,冯韶伟. 大推力捆绑运载火箭传力路径优化设计[J]. 导弹与航天运载技术,2017(4):6-9,29
MEI Y,FENG S W. An optimization design for the force transmission path on the high-thrust strap-on launch vehicle[J]. Missiles and Space Vehicles,2017(4):6-9,29
[6] 冯韶伟,刘竹生,马忠辉,等. 捆绑火箭助推器与芯级间捆绑联接技术应用进展[J]. 导弹与航天运载技术,2012(6):20-23
FENG S W,LIU Z S,MA Z H,et al. Status of application of coupling technology in strap-on launch vehicle[J]. Missiles And Space Vehicles,2012(6):20-23
[7] 冯韶伟,刘竹生,栾宇,等. 基于拉压不同刚度的运载火箭捆绑联接装置力学特性研究[J]. 导弹与航天运载技术,2013(4):9-13
FENG S W,LIU Z S,LUAN Y,et al. Dynamic analysis of strap-on equipment in launch vehicle based on different tensile and compressive stiffness[J]. Missiles and Space Vehicles,2013(4):9-13
[8] 宋建岭,李超. 搅拌摩擦焊在运载火箭贮箱制造中的应用与发展[J]. 焊接,2018(5):21-27
SONG J L,LI C. Application of FSW technology to tank manufacturing of launch vehicle and its development[J]. Welding & Joining,2018(5):21-27
[9] 许云峰. 搅拌摩擦焊的缺陷类型及其检测技术[J]. 航空制造技术,2012(13):77-79
XU Y F. Defect type of friction stir welding and inspection technology[J]. Aeronautical Manufacturing Technology,2012(13):77-79
[10] 韩永全,陈树君,殷树言,等. 大厚度铝合金变极性等离子弧穿孔立焊技术[J]. 机械工程学报,2006,42(9):144-148
HAN Y Q,CHEN S J,YIN S Y,et al. Variable polarity plasma arc welding process for thick aluminum alloy[J]. Chinese Journal of Mechanical Engineering,2006,42(9):144-148
[11] 曹磊,张亮,蒋凡. 工艺参数对镁铝合金VPPA焊焊缝成形的影响[J]. 河北科技大学学报,2019,40(3):265-272
CAO L,ZHANG L,JIANG F. Influence of welding parameters on weld forming appearance in VPPA welding of Al-Mg alloy[J]. Journal of Hebei University of Science and Technology,2019,40(3):265-272
[12] 韩永全,陈树君,殷树言. 铝合金变极性等离子焊接电弧产热机理[J]. 焊接学报,2007,28(12):35-38
HAN Y Q,CHEN S J,YIN S Y. Principle of produced heat by arcproperties in VPPA of aluminum alloy[J]. Transactions of The China Welding Institution,2007,28(12):35-38
[13] 闫指江,吴胜宝,赵一博,等. 低温贮箱组合绝热材料隔热性能测试试验研究[J]. 载人航天,2017,23 (1):56-60
YAN Z J,WU S B,ZHAO Y B,et al. Experimental research on heat insulation performance of assembled thermal insulation materials in cryogenic tank[J]. Manned Spaceflight,2017,23 (1):56-60
[14] 冶文莲,王田刚,王小军. 应用于低温贮箱的变密度多层绝热传热分析[J]. 低温与超导,2012,40 (12):5-8
YE W L,WANG T G,WANG X J,et al. Heat transfer analysis of variable density multi-layer insulation for cryogenic storage tank[J]. Cryogenics & Superconductivity,2012,40 (12):5-8
[15] 郑建朋,崔晨,陈六彪,等. 低温推进剂贮箱绝热性能实验研究[J]. 真空与低温,2016(1):8-17
ZHENG J P,CUI C,CHEN L B,et al. Experimental study on insulation performance of cryogenic propellant tank[J]. Vacuum and Cryogenics,2016(1):8-17
[16] 朱云平,张帆. 贮箱绝热层打磨机器人系统设计[J]. 上海工程技术大学学报,2017,31 (1):1-4
ZHU Y P,ZHANG F. Design of grinding robot system for tank insulating layer[J]. Journal of Shanghai University of Engineering Science,2017,31 (1):1-4
[17] 李开妍,王晗,郝海. 蜂窝铝材料的铸造工艺和压缩性能研究[J]. 铸造技术,2019(8):772-777
LI K Y,WANG H,HAO H. Study on casting process and compressive property for aluminum honeycomb[J]. Foundry Technology,2019(8):772-777
[18] 赵旭亚. 蜂窝铝夹芯板的剪切、压缩力学性能研究[D]. 秦皇岛:燕山大学,2017.
ZHAO X Y. Quasi-static shear and compression tests on sandwich panel of aluminum honeycomb[D]. Qinhuangdao:Yanshan University,2017.
[19] 辛亚军,肖博,刘小蛮,等. 蜂窝铝夹芯板准静态局压试验研究[J]. 机械强度,2017(3):518-526
XIN Y J,XIAO B,LIU X M,et al. Quasi-static localized indentation tests on aluminum honeycomb sandwich panel[J]. Journal of Mechanical Strength,2017(3):518-526
[20] 程向华,陈二锋,厉彦忠. 低温液体火箭发动机自然循环预冷研究[J]. 火箭推进,2012(5):1-6+36
CHENG X H,CHEN E F,LI Y Z. Investigation on natural circulation precooling for cryogenic liquid rocket engine[J]. Journal of Rocket Propulsion,2012(5):1-6+36
[21] 程向华,厉彦忠,陈二锋. 不同回流位置液体火箭发动机循环预冷回路特性[J]. 火箭推进,2008(6):646-650
CHENG X H,LI Y Z,CHEN E F. Performance of circulation precooling loop for liquid rocket engine with different return flow locations[J]. Journal of Propulsion Technology,2008(6):646-650
[22] 田玉蓉,张福忠,唐一华. 低温推进剂火箭发动机循环预冷方法研究[J]. 导弹与航天运载技术,2003(2):7-15
TIAN Y R,ZHANG F Z,TANG Y H. The study of circulating chilldown methods of cryogenic rocket engine[J]. Missiles and Space Vehicles,2003(2):7-15
[23] 孙礼杰,樊宏湍,刘增光,等. 低温推进剂火箭发动机预冷方案研究[J]. 上海航天,2012(4):41-48
SUN L J,FAN H T,LIU Z G,et al. Research on precooling of cryogenic propellant rocket engines[J]. Aerospace Shanghai,2012(4):41-48
[24] 李永兵,匡波,张中伟,等. 低温推进剂输送系统循环预冷非稳态数值模拟研究[J]. 低温工程,2009(1):36-45
LI Y B,KUANG B,ZHANG Z W,et al. Numerical simulation on unsteady process in chilldown of cryogenic propellant transfer system[J]. Cryogenics,2009(1):36-45
[25] 戈庆明,于新宇,郑孟伟,等. 低温推进剂输送管路热动力排气系统研究[J]. 导弹与航天运载技术,2015(3):82-85
GE Q M,YU X Y,ZHENG M W,et al. Thermodynamic vent system for cryogenic propellant feed system[J]. Missiles and Space Vehicles,2015(3):82-85
[26] 姚娜,廖少英,顾仁年. 低温推进剂输送管绝热试验研究[J]. 上海航天,2004(2):50-53
YAO N,LIAO S Y,GU R N. The insulation experiment of cryogenic propellant pipe[J]. Aerospace Shanghai,2004(2):50-53
[27] 崔俊霞,王涛,金英. 气动增压系统的设计与仿真[J]. 液压与气动,2013(2):13-16
CUI J X,WANG T,JIN Y. Study and simulation for pneumatic pressurization system[J]. Chinese Hydraulics & Pneumatics,2013(2):13-16
[28] 张福忠,张化照. 超临界氦加温增压方案的初步探讨[J]. 导弹与航天运载技术,2001(6):41-46
ZHANG F Z,ZHANG H Z. Primary study of supercritical helium heating pressurization scheme[J]. Missiles and Space Vehicles,2001(6):41-46
[29] 邢力超,程翔,赵春宇,等. 超临界氦加温增压系统试验研究[J]. 液压与气动,2015(7):96-98+102
XING L L,CHENG X,ZHAO C Y,et al. Experimental study on supercritical helium heating pressurization system[J]. Chinese Hydraulics & Pneumatics,2015(7):96-98+102
[30] 耑锐,刘拓,赵栋梁,等. 火箭氧箱冷氦加温增压系统:中国,CN107630769A[P]. 2018-01-26.
[31] 蒋万松,荣伟. 火箭助推器翼伞回收动力学仿真分析[J]. 航天返回与遥感,2017,38(3):13-23
JIANG W,RONG W. Dynamical simulation analysis for booster recovery with parafoil system[J]. Spacecraft Recovery & Remote Sensing,2017,38(3):13-23
PDF(2119 KB)

Accesses

Citations

Detail

Sections
Recommended

/