PDF(1343 KB)
Dynamics Modeling and Simulation Analysis of Mars Rover System
- PAN Dong, LI Delun, YUAN Baofeng, JIA Yang, WANG Rui, ZHANG Zezhou
Author information
+
Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
Show less
History
+
Received |
Revised |
03 Mar 2020 |
01 Aug 2020 |
Issue Date |
|
20 May 2022 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
[1] BASILEVSKY A T,KRESLAVSKY M A,KARACHEVTSEVA L P. Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas[J]. Planetary and Space Science,2014(92):77-87
[2] GROTZINGER J P. Mars Science Laboratory mission and science investigation[J]. Space Science Reviews,2012,170(1-4):5-56
[3] 邓宗全,范雪兵,高海波,等. 载人月球车移动系统综述及关键技术分析[J]. 宇航学报,2012,33:675-689
DENG Z Q,FAN X B,GAO H B,et al. Review and key techniques for locomotive system of manned lunar rovers[J]. Journal of Astronautics,2012,33:675-689
[4] 王琼,贾阳,陶灼,等. 火星移动智能体技术探讨[J]. 航天器工程,2015,24(4):27-32
WANG Q,JIA Y,TAO Z,et al. Discuss on Mars mobile agent technologies[J]. Spacecraft Engineering,2015,24(4):27-32
[5] 于登云,孙泽洲,孟林智,等. 火星探测发展历程与未来展望[J]. 深空探测学报(中英文),2016,3(2): 108-113.
YU D Y,SUN Z Z,MENG L Z,et al. The development process and prospects for Mars exploration [J]. Journal of Deep Space Exploration,2016,3(2):108-113.
[6] SUN Z Z,JIA Y,ZHANG H. Technological advancements promotion roles of Chang’e-3 lunar probe mission[J]. Technological Sciences,2013,56(11):2702
[7] 陈百超. 月球车悬架研究及动力学仿真[D]. 长春:吉林大学,2006.
CHEN B C. Lunar rover suspension research and dynamic simulation[D]. ChangChun:Jilin University,2006.
[8] 高海波,郑军强,刘振,等. 主动悬架式火星车车轮抬离地面性能分析[J]. 机器人,2017,39(2):139-150
GAO H B,ZHENG J Q,LIU Z,et al. Performance analysis on wheels lifting-off-ground for Mars rover with active suspension[J]. Robot,2017,39(2):139-150
[9] 陶灼,陈百超,贾阳. 火星车主动悬架的几何参数优化[J]. 航天器工程,2016,25(6):48-54
TAO Z,CHEN B C,JIA Y. Optimization of geometric parameters for martian rover active suspension[J]. Spacecraft Engineering,2016,25(6):48-54
[10] 郑军强. 六轮摇臂式火星车轮–步复合移动系统及蠕动爬行策略研究[D]. 哈尔滨:哈尔滨工业大学,2019.
ZHENG J Q. Study on derivative-free algorithms in the air-to-sea single observer passive tracking application[D]. Harbin:Harbin Institute of Technology,2019.
[11] 唐玲,刘涛,李德伦,等. 一种主动悬架式火星车稳定裕度优化控制策略[J]. 宇航学报,2019,11:1348-1357
TANG L,LIU T,LI D L,et al. An optimal control strategy for stability margin of a Mars rover with active suspension[J]. Journal of Astronautics,2019,11:1348-1357
[12] 丁亮. 月/星球车轮地作用地面力学模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2009.
DING L. Wheel-soil interaction terramechanics for lunar/planetary exploration rovers:modeling and application[D]. Harbin:Harbin Institute of Technology,2009.
[13] 杜建军,任明俊,刘暾,等. 非对称行星探测车行走系统的动力学仿真及运动性能分析[J]. 机器人,2011,33(1):1-8
DU J J,REN M J,LIU D,et al. Dynamics simulation and motion capability analysis on the mobile systm for asymmetric planetary rover[J]. Robot,2011,33(1):1-8