Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy

XUE Bin1, LIU Shengrun1,2, YANG Jianfeng1

PDF(20473 KB)
PDF(20473 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (5) : 503-512. DOI: 10.15982/j.issn.2095-7777.2019.05.012
Article

Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy

  • XUE Bin1, LIU Shengrun1,2, YANG Jianfeng1
Author information +
History +

Abstract

Life information detection is one of the most significant part of deep space exploration. This paper introduces briefly The advantages of Raman spectroscopy for detecting organic matter and advancements of the detection of life information on Mars are briefly introduced, as well as the common techniques for detecting information of Martian life. The development of detecting organic matter and life information on Mars with laser Raman spectroscopy is described in detail. The technology trend for the detection of organic matters on Mars surface is analyzed. The prospects for development of Raman spectroscopy in the field of Mars exploration are briefly summarized.

Keywords

Mars exploration / life information / organic matter / Raman spectroscopy / LIBS / LIF

Cite this article

Download citation ▾
XUE Bin, LIU Shengrun, YANG Jianfeng. Advancements in Detection of Life Information on Mars with Raman Laser Spectroscopy. Journal of Deep Space Exploration, 2019, 6(5): 503‒512 https://doi.org/10.15982/j.issn.2095-7777.2019.05.012

References

[1] 许春,王成良.火星探测技术综述[J].红外, 2008, 29(7):1-8. XU C, WANG C L.Overview of Mars exploration technology[J].In-frared, 2008, 29(7):1-8.
[2] CRAIG P M.Why choose Raman spectroscopy for the exploration of Mars[J].materials AUSTRALIA, 2006, 39(5):26-28.
[3] 刘建军,李春来.行星表面物质成分就位分析仪器的研究进展[C]//中国宇航学会深空探测技术专业委员会学术会议.北京:中国宇航学会深空探测技术专业委员会学术会议, 2005:391-394.
[4] BYRN E, INGERSOLL A P. A sublimation model for martian south polar ice features[J]. Science, 2003, 299(5609):1051-1053.
[5] HERKENHOFF K E, SQUYRES S W, ARVIDSON R, et al. Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum[J]. Science, 2004, 306(5702):1727-1730.
[6] AGEEC B, ELARDOS M. Unique meteorite from early Amazonian Mars:water-rich basaltic breccia Northwest Africa 7034.[J]. Science, 2013, 339(6121):780-785.
[7] LIN Y, EL GORESY A, HU S, et al. NanoSIMS analysis of organic carbon from the Tissint Martian meteorite:evidence for the past existence of subsurface organic-bearing fluids on Mars[J]. Meteoritics&Planetary Science, 2015, 49(12):2201-2218.
[8] NASA. NASA confirms evidence that liquid water flows on today's Mars[EB/OL].[2017-07-10]. https://phys.org/news/2015-09-evidence-brine-mars.html.
[9] LALLA E A, SANZ-ARRANZ A, LOPEZ-REYES G, et al. RamanMössbauer-XRD studies of selected samples from "Los Azulejos" outcrop:a possible analogue for assessing the alteration processes on Mars[J]. Advances in Space Research, 2016, 57(11):2385-2395.
[10] MADERAZZO M, HUGUENIN R. Petrologic interpretation of viking XRF analysis based on reflectance spectra and the photochemical weathering model[J]. Investigative Ophthalmology&Visual Science, 1977, 16(9):779-86.
[11] KLINGELHÖFER G, MORRIS R V, DE SOUZA P A, et al. Two Earth years of Mössbauer studies of the surface of Mars with MIMOS II[J]. Hyperfine Interactions, 2006, 170(1-3):169-177.
[12] SCHRÖDER S, MESLIN P Y, COUSIN A, et al. First analysis of hydrogen in ChemCam spectra at Curiosity landing site[C]//European Geosciences Union.Vienna:[s.n.], 2013.
[13] WÄNKE H. Chemistry, accretion, and evolution of Mars[J]. Space Science Reviews, 1991, 56(1-2):1-8.
[14] BISHOP J L, ROTHSTEIN Y, DYAR M D, et al. Distinguishing Na, K, and H3O+ jarosite and aluniteon Mars using VNIR, emittance and mossbauer spectroscopy on the MER and Mars express/OMEGA missions[C]//AGU Fall Meeting Abstracts.[S.l.]:AGU, 2005.
[15] WIENS R C, MAURICE S, BARRACLOUGH B, et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover:body unit and combined system tests[J]. Space Science Reviews, 2012, 170(1-4):167-227.
[16] SHARMA S K, LUCEY P G, GHOSH M, et al. Stand-off Raman spectroscopic detection of minerals on planetary surfaces[J]. Spectrochimica Acta Part A Molecular&Biomolecular Spectroscopy, 2003, 59(10):2391-2407.
[17] LALLA E A, LOPEZ-REYES G, SANSANO A, et al. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island:implication for Mars[J]. Geoscience Frontiers, 2016, 7(4):673-681.
[18] 韩伟,黄建同,苏乐,等.基于激光显微拉曼技术鉴别印章盖印时间[J].光散射学报, 2015, 27(4):359-363. HAN W, HUANG J T, SU L, et al. Application of Micro-Raman spec-troscopy technology in testing the again of stamp impressions[J].The Journal of Light, 2015, 27(4):359-363.
[19] HOLLOWAY J H. Explosives standoff detection using Raman spectroscopy:from bulk towards trace detection[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2010, 7664(8):76441K1-76441K12.
[20] 刘燕德,刘涛,孙旭东,等.拉曼光谱技术在食品质量安全检测中的应用[J].光谱学与光谱分析, 2010, 30(11):3007-3012. LIU YD, LIU T, SUN X D, et al. Application of Raman spectroscopy technique to food quality and safety detection[J]. Spectroscopy and Spectral Analysis,2010,30(11):3007-3012.
[21] ANGEL S M, GOMER N R, SHARMA S K, et al. Remote Raman spectroscopy for planetary exploration:a review.[J]. Applied Spectroscopy, 2012, 66(2):137-150.
[22] WANG A, JOLLIFF B L, HASKIN L A. Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions[J]. Journal of Geophysical Research Planets, 1995, 100(E10):21189-21199.
[23] HASKIN L A, WANG A, Rockow K M, et al. Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis:a point count method[J]. Journal of Geophysical Research Planets, 1997, 102(E8):19293-19306.
[24] WANG A, HASKIN L A, LANE A L, et al. Development of the Mars microbeam Raman spectrometer (MMRS)[J]. Journal of Geophysical Research Atmospheres, 2003, 108(E1):233-236.
[25] SHARMA S K, WANG A, HASKIN L A. Remote Raman measurements of minerals with Mars microbeam Raman spectrometer (MMRS)[J]. Aorn Journal, 2005, 58(1):370-4.
[26] JEHLIČKA J, EDWARDSH G M, VÍTEK P. Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies[J]. Planetary&Space Science, 2009, 57(5):606-613.
[27] BAZALGETTE C G, AHLERS B, PÉREZ F R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars.[J]. SpectrochimicaActa Part A Molecular&Biomolecular Spectroscopy, 2007, 68(4):1023-1028.
[28] MORAL A G, COLOMBO M. ExoMars Raman laser spectrometer for Exomars[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8152(1):81520J1-81520J13.
[29] EDWARDS H G M, HUTCHINSON I, INGLEY R. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype[J]. Analytical&Bioanalytical Chemistry, 2012, 404(6-7):1723.
[30] MORAL A G, RAMOS G, COLOMBO M. ExoMars Raman laser spectrometer breadboard overview[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8152:81520L1-81520L13.
[31] EDWARDS H G M, HUTCHINSON I, INGLEY R. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype[J]. Analytical&Bioanalytical Chemistry, 2012, 404(6-7):1723.
[32] BEEGLE L, BHARTIA R, WHITE M, et al. SHERLOC:scanning habitable environments with Raman&luminescence for organics&chemicals[C]//IEEE Aerospace Conference.Montana:IEEE, 2015.
[33] BEEGLE L W, BHARTIA R, DEFLORES L, et al. SHERLOC:an investigation for Mars 2020[J]. Lpi Contributions, 2016, 18:1-9.
[34] MISRA A K, TAYLOR G J, GASDA P J, et al. Next generation laserbased standoff spectroscopy techniques for Mars exploration[J]. Applied Spectroscopy, 2015, 69(2):173-192.
[35] CARRIER B L, BEEGLE L W, BHARTIA R, et al. Measurement of UV fluorescence and raman signatures of organic compounds in the subsurface of Mars relevant minerals to constrain detection Depth for the SHERLOC Mars 2020 instrument[C]//Lunar and Planetary Science Conference.[S.l.]:Lunar and Planetary Science Conference, 2016.
[36] 朱香平,张文松,汤洁,等.一种行星表面物质及大气远程原位综合测试系统:中国, 201310675957.1[P]. 2013-12-11.
[37] 朱香平,张文松,汤洁,等.共聚焦显微拉曼和激光诱导击穿光谱联用激光光谱分析仪:中国, 201320817233.1[P]. 2013-12-11.
[38] 张丹.用于火星表面物质探测的拉曼光谱技术研究[D].北京:中国科学院大学, 2015. ZHANG D. Study of Raman spectrum technique for material detec-tion on Mars surface[D]. Beijing:University of Chinese Academy of Sciences,2015.
[39] 舒嵘,万雄,徐卫明,等.基于主被动结合光谱技术的火星物质成分测试系统, 201510868730.8[P]. 2015-12-01.
[40] HU Y C, ZHANG L L, WU Z C, et al. Developing mini Raman spectral system in mineral spectral analysis[J]. Physics ecperimentation, 2016, 36(10):34-36.
[41] LING Z C, CAO F K, NI Y H, et al. Raman spectroscopic study of the K-Na jarosite solid solutions[C]//Lunar and Planetary Science Conference.[S.l.]:Lunar and Planetary Science Conference, 2015.
[42] DIGREGORIO B E. Uncovering the secret of the rocks with LIBS[J]. Spectroscopy, 2003, 18(3):30-31.
[43] BAZALGETTE C G, AHLERS B, PÉREZ F R. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars[J]. SpectrochimicaActa Part A Molecular&Biomolecular Spectroscopy, 2007, 68(4):1023-1028.
[44] SHARMA S K, ISMAIL S, ANGEL S M, et al. Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[C]//Instruments, Science, and Methods for Geospace and Planetary Remote Sensing. Honolulu:[s.n.], 2004.
[45] BLACKSBERG J, MARUYAMA Y, CHOUKROUN M, et al. Combined Raman and LIBS for planetary surface exploration:enhanced science return enabled by time-resolved laser spectroscopy[J]. International Workshop on Instrumentation for Planetary Missions, 2012, 1683:1044.
PDF(20473 KB)

Accesses

Citations

Detail

Sections
Recommended

/