Application Study of Radar Technology for Small Body Exploration Missions

WANG Ke1, ZHENG Shi1, XIE Hu1, DENG Jian2, ZHU Peimin2, FA Wenzhe3, TAN Xiaomin1

PDF(2927 KB)
PDF(2927 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (5) : 496-502. DOI: 10.15982/j.issn.2095-7777.2019.05.011
Topic: Science and Supporting Technology of Small-Boby Exploration

Application Study of Radar Technology for Small Body Exploration Missions

  • WANG Ke1, ZHENG Shi1, XIE Hu1, DENG Jian2, ZHU Peimin2, FA Wenzhe3, TAN Xiaomin1
Author information +
History +

Abstract

Radar technology can be applied to small body exploration missions for subsurface detection and global interior structuredetection. In this paper, the current applications both at home and abroad are introduced, and the different application scenes of monostatic radar and bistatic radar are described and the characteristics ofmonostatic radar loaded on the orbiter and the rover are presented. Through analyzing of potential material and structure of small bodies and studying the working principles of monostaticand bistaticradars, the available radar mode for a small body with potential structure is proposed. For a layered small body, which is always in a relatively large size, the monostatic radar can be applied for subsurface detection. While for a rubble pile small body, the bistatic radar can be used to obtain its permittivity and image the global interior structure using transmitted waves over global observation. The effectiveness of the bistatic radar forinterior structure detection of a rubble pile asteroid is verified through numerical simulation.

Keywords

radar technology / small body / subsurface detection / interior structure / application

Cite this article

Download citation ▾
WANG Ke, ZHENG Shi, XIE Hu, DENG Jian, ZHU Peimin, FA Wenzhe, TAN Xiaomin. Application Study of Radar Technology for Small Body Exploration Missions. Journal of Deep Space Exploration, 2019, 6(5): 496‒502 https://doi.org/10.15982/j.issn.2095-7777.2019.05.011

References

[1] 徐伟彪,赵海斌.小行星深空探测的科学意义和展望[J].地球科学进展, 2005, 20(11):1183-1190. XU W B, ZHAO H B. Deep space exploration of asteroids:the sci-ence perspectives[J]. Advances in Earth Science, 2005, 20(11):1183-1190.
[2] 胡中为,王尔康.行星科学导论[M].南京:南京大学出版社, 1998.
[3] NEAL A. Ground-penetrating radar and its use in sedimentology:principles, problems and progress[J]. Earth-Science Reviews, 2004, 66:3-4.
[4] XIAO L, ZHU P, FANG G, et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang'E-3 mission[J]. Science, 2015, 347(6227):1226-1229.
[5] KOBAYASHI T, OYA H, ONO T. A-scope analysis of subsurface radar sounding of lunar mare region[J]. Earth Planets Space, 2002, 54(2002):973-982.
[6] 李雁斌,王凤姣,江利中.小行星浅表探测雷达技术[J].制导与引信, 2015, 36(1):51-58. LI Y B, WANG F J, JIANG L Z. Asteroid subsurface detection radar technology[J]. Guidance&Fuze, 2015, 36(1):51-58.
[7] KOFMAN W, BARBIN Y, KLINGER J, et al. Comet nucleus souding experiment by radiowave transmission[J]. Advance Space Research, 1998, 21(11):1589-1598.
[8] HERIQUE A, KOFMANA W, HAGFORS T, et al. A characterization of a comet nucleus interior:inversion of simulated radio frequency data[J]. Planetary and Space Science, 1998, 47(1999):885-904.
[9] KOFMAN W, HERIQUE A, BARBIN Y, et al. Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar[J]. Science, 2015, 349(6247):1-9.
[10] KOBAYASHI T, OYA H, ONO T. B-scan analysis of subsurface radar sounding of lunar highland region[J]. Earth Planets Space, 2002, 54(2002):983-991.
[11] HERIQUE A, AGNUS B, ASPHAUG E, et al. Direct observations of asteroid interior and regolith structure:science measurement requirements[J]. Advances in Space Research, 2017:1-9.
[12] EYRAUD C, HERIQUE A, GEFFRIN J M, et al.Imaging the interior of a comet from bistatic microwave measurements Case of a scale comet model[J]. Advances in Space Research, 2017:19-25.
[13] SPAGNOLINI U, RAMPA V. Multitarget detection/tracking for monostatic ground penetrating radar:Application to pavement profiling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1):383-394.
[14] 郑晗,陈自宽,康雁.基于滤波反投影的超短锥束CT扫描算法[J].东北大学学报(自然科学版), 2008, 29(8):1087-1090. ZHENG H, CHEN Z K, KANG Y. An FBP-based super-short-scan al-gorithm for local Cone-Beam tomography[J]. Journal of Northeast-ern University (Natural Science), 2008, 29(8):1087-1090.
[15] 杨薇,刘四新,冯彦谦.跨孔层析成像LSQR算法研究[J].物探与化探, 2008, 32(2):199-202. YANG W, LIU S X, FENG Y Q. A study of the lsqr algorithm for cross-hole tomography[J]. Geophysical and Geochemical Explora-tion, 2008, 32(2):199-202.
[16] SU H, XU F, LU S, et al. Iterative ADMM for inverse bi problem a potential solution to radio tomography of asteroids[J]. Ieee Transactions on Geoscience and Remote Sensing, 2016(6):5226-5238.
PDF(2927 KB)

Accesses

Citations

Detail

Sections
Recommended

/