Modeling of Surface Temperature for Near-Earth Asteroid 2016HO3

JIA Xiaoyu1, YANG Chen2, WANG Tong1, WEN Yi2

PDF(19687 KB)
PDF(19687 KB)
Journal of Deep Space Exploration ›› 2019, Vol. 6 ›› Issue (5) : 470-480. DOI: 10.15982/j.issn.2095-7777.2019.05.008
Topic: Science and Supporting Technology of Small-Boby Exploration

Modeling of Surface Temperature for Near-Earth Asteroid 2016HO3

  • JIA Xiaoyu1, YANG Chen2, WANG Tong1, WEN Yi2
Author information +
History +

Abstract

On April 18, 2019, the China National Space Administration (CNSA) published the plan of asteroid exploration, which would select the near-earth asteroid 2016HO3 as one of its targets. On this paper, the parameters of 2016HO3 for thermal environment analysis were discussed. By investigating the current international observation data, the environmental parameters of 2016HO3 are obtained preliminarily. Then the near-Earth asteroid thermal model(NEATM) and asteroid thermal physics model (TPM) were used to model and analyze the surface temperature of 2016HO3, and the upper boulder of the temperature was 412 K. Considering the spinning effect, the day and night temperature difference at different locations was simulated and analyzed, and the temperature analysis method under the polar night conditions was proposed, then the maximum temperature difference at any position was determined to be about 30 K. Last on the basis of TPM, by the idea of the average illumination during the rotation period, the temperature analysis method of the polar night was proposed, and lower limit of temperature of 2016HO3 was achieved.

Keywords

near Earth-asteroid / 2016HO3 / thermal physics model / thermal environment / simulation

Cite this article

Download citation ▾
JIA Xiaoyu, YANG Chen, WANG Tong, WEN Yi. Modeling of Surface Temperature for Near-Earth Asteroid 2016HO3. Journal of Deep Space Exploration, 2019, 6(5): 470‒480 https://doi.org/10.15982/j.issn.2095-7777.2019.05.008

References

[1] 李成方.日发射"隼鸟"2小行星探测器[J].中国航天, 2015(2):42-43.
[2] LAURETTAD, BALRAM-KNUTSONS, BESHOREE, et al. OSIRIS-Rex:sample return from asteroid (101955) Bennu[J]. Space Science Reviews, 2017, 212(1-2):1-60.
[3] 姜浩轩,季江徽.小行星热物理及Yarkovsky效应和YORP效应的研究进展[J].天文学进展, 2018, 36(3):213-231.
[4] BOTTKE W F J, VOKROUHLICKÝ D, RUBINCAM D P, et al. The Yarkovsky and YORP effects:implications for asteroid dynamics[J]. Annu. Rev. Earth Planet. Sci., 2006, 34:157-191.
[5] DELBO M,HARRIS A W. Physical properties of near-Earth asteroids from thermal infrared observations and thermal modeling[J]. Meteoritics&Planet. Sci., 2001, 37:1929-1936.
[6] MARCHI S, DELBO M, MORBIDELLI A, et al. Heating of nearEarth objects and meteoroids due to close approaches to the Sun[J]. Mon. Not. R. Astron. Soc., 2009, 400:147-153.
[7] DE LA FUENTE MARCOS C, DE LA FUENTE MARCOS R. Asteroid (469219)2016HO3, the smallest and closet Earth quasisatellite[J]. Monthly Notices of Royal Astronomical Society, 2016, 462(4):3441-3456.
[8] 数据来源NeoDy数据库[EB/OL].[2019-7-10]. newton.spacedys.com/neodys/index.php?pc=1.1.1&n=469219.
[9] 数据来源ALCDEF数据库[EB/OL].[2019-7-10]. alcdef.org/PHP/alcdef_GenerateALCDEFPage.php.
[10] MPC. IAU minor planet center[EB/OL].[2019-7-10]. minorplanet-center.net/db_search/show_object?object_id=469219.
[11] REDDY. The Observation of 2016HO3[C]//The observation of 2016HO3, USA:[s.n.], 2018.
[12] BURNS J A, SAFRONOV V S. Asteroid nutation angles[J]. Mon. Not. R. Astron. Soc., 1973, 165:403-411.
[13] HARRIS A W. Tumbling asteroids[J]. Icarus, 1994, 107:209-211.
[14] DELBO M, HARRIS A W. Physical properties of near-Earth asteroids from thermal infrared observations and thermal modeling[J]. Meteoritics&Planet. Sci. 2002, 37:1929-1936.
[15] DELLAGIUSTINA D N, EMERY J P, GOLISHD R,et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nature Astronomy, 2019(3):341-351.
[16] LANDSMANA Z. The Physical properties and composition of mainbelt asteroids from infrared spectroscope[D]. USA:University of Centre Florida:Department of Physics, 2011.
[17] THOMAS M, SUNAO H, FUMIHIKO U.(25143) Itokawa:the Power of radiometric techniques for interpretation of remote thermal obsevations in the light of the Hayabusa rendezvous results[J]. Astronomical Society of Japan, 2014, 66(3):1-30.
[18] WALSHK J, JAWIN E R, BALLOUZ R L, et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12:242-246.
[19] HARRIS A W. A thermal model for near-Earth asteroids[J]. Icarus, 1998, 131:291-301.
[20] DELBO M, MUELLER M, EMERY J P, et al. Asteroid thermophysical modeling[J]. In Asteroids IV, 2015, 109:11-16.
[21] DELBO M, D'ORO A, HARRIS A W, et al. Thermal inertia of nearEarth asteroids and implications for the magnitude of the Yarkovsky effect[J]. Icarus, 2007, 190:236-249.
[22] BELSKAYA I, CELLINO A, GIL-HUTTON R, et al. Asteroid polarimetry[J]. In Asteroids IV, 2015:151-163.
[23] DAVIDSSON B, RICKMAN H, BANDFIELD J L, et al. Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies[J]. Icarus, 2015, 252:1-21.
[24] ROZITIS B, GREEN S F. Directional characteristics of thermalinfrared beaming from atmosphereless planetary surfaces-a new thermophysical model[J]. Mon. Not. R. Astron. Soc., 2011, 415:2042-2062.
PDF(19687 KB)

Accesses

Citations

Detail

Sections
Recommended

/