Celestial Doppler Difference/Pulsar for Formation Flying and Its Integrated Navigation

YU Ziyuan1, LIU Jin1, NING Xiaolin2, MA Xin2, GUI Mingzhen2, KANG Zhiwei3

PDF(1950 KB)
PDF(1950 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (3) : 212-218. DOI: 10.15982/j.issn.2095-7777.2018.3.002

Celestial Doppler Difference/Pulsar for Formation Flying and Its Integrated Navigation

  • YU Ziyuan1, LIU Jin1, NING Xiaolin2, MA Xin2, GUI Mingzhen2, KANG Zhiwei3
Author information +
History +

Abstract

In order to improve the spacecraft capability of autonomous celestial navigation,a celestial Doppler difference/pulsar for formation flying and its integrated navigation method is proposed. The Sun light is strong,and the accuracy of the Sun Doppler difference navigation is high,but it is difficult to provide multi-directional velocity information. Star light is weak,and the accuracy of star Doppler difference navigation is low,but it can provide multi-directional velocity information. The Sun Doppler difference navigation and the star Doppler difference navigation are complementary,but which cannot be fully observable. Using three or more pulsar navigation is completely observable,but the filtering period is longer,and it is difficult to obtain continuous navigation information. The three navigation methods are complementary and can be used for integrated navigation. The extended Kalman filter is used as a navigation filter to fuse the difference and arrival time of the astronomical Doppler,and can provide absolute and relative navigation information for formation flying. Simulation results show that the integrated navigation method for formation flight can provide absolute and relative highly-accurate navigation information.

Keywords

formation flight / celestial Doppler difference navigation / Kalman filter / pulsar

Cite this article

Download citation ▾
YU Ziyuan, LIU Jin, NING Xiaolin, MA Xin, GUI Mingzhen, KANG Zhiwei. Celestial Doppler Difference/Pulsar for Formation Flying and Its Integrated Navigation. Journal of Deep Space Exploration, 2018, 5(3): 212‒218 https://doi.org/10.15982/j.issn.2095-7777.2018.3.002

References

[1] ?NING X L,FANG J C. Spacecraft autonomous navigation using unscented particle filter-based celestial/Doppler information fusion[J]. Measurement Science and Technology,2008,19(9):1-8
[2] ZHOU J,GE Z L,SHI G G,et al. Key technique and development for geomagnetic navigation[J]. Journal of Astronautics,2008,29(5):467-72
[3] 魏二虎,杨洪洲,张帅,等. 脉冲星非实时平差的火星探测自主导航模型[J]. 深空探测学报,2014,1(4):298-302
WEI E H,YANG H Z,ZHANG S,et al. Modeling on autonomous navigation of Mars probe with pulsar and non real-time adjustment methods[J]. Journal of Deep Space of Exploration,2014,1(4):298-302
[4] 郑伟,张璐,王奕迪. 基于星联网的深空自主导航方案设计[J]. 深空探测学报,2017,4(1):31-37
ZHENG W,ZHANG L,WANG Y D. Design of deep space autonomous navigation system based on spacecraft networking[J]. Journal of Deep Space of Exploration,2017,4(1):31-37
[5] 刘劲,马杰,田金文. 利用X射线脉冲星和多普勒频移的组合导航[J]. 宇航学报,2010,31(6):1552-1557
LIU J,MA J,TIAN J W. Integrated X-ray pulsar and Doppler shift navigation[J]. Journal of Astronautics,2010,31(6):1552-1557
[6] CUI P Y,WANG S,GAO A,et al. X-ray pulsars/Doppler integrated navigation for Mars final approach[J]. Advances in Space Research,2016,57(9):1889-1990
[7] LIU J,FANG J C,LIU G. Solar frequency shift–based radial velocity difference measurement for formation flight and its integrated navigation[J]. Journal of Aerospace Engineering,2017,30(5):04017049
[8] 房建成,宁晓琳,刘劲. 航天器自主天文导航原理与方法[M]. 第2版,北京:国防工业出版社,2017.
FANG J C,NING X L,LIU J. Principles and methods of spacecraft celestial navigation[M]. Second Edition,Beijing:National Defense Industry Press,2017.
[9] 郑谔. 卫星–惯性–星光最优组合导航系统在航天飞机导航中的应用[J]. 航空学报,1988,10(10):448-453
ZHENG E. Application of GPS-INS-STAR integrated navigation system in spacecraft[J]. Acta Aeronautica et Astronautica Sinica,1988,10(10):448-453
[10] SMITH F G. Pulsar astronomy [M]. 4th Edition,London:Cambridge University Press,2012.
[11] 钟敏,刘劲,孙永明,等. 基于EKF的脉冲星导航在转移轨道的应用[J]. 电子设计工程,2014,22(6):4-6
ZHONG M,LIU J,SUN Y M,et al. EKF-based pulsar navigation for transfer orbit[J]. Electronic Design Engineering,2014,22(6):4-6
[12] LIU J,MA J,TIAN J W,et al. X-ray pulsar navigation method for spacecraft with pulsar direction error[J]. Advances in Space Research,2010,46(11):1409-1417
[13] 帅平,陈绍龙,吴一帆,等. X射线脉冲星导航原理[J]. 宇航学报,2007,28(6):104-109
SHUAI P,CHEN S L,WU Y F,et al. Navigation principles using X-ray pulsar[J]. Journal of Astronautics,2007,28(6):104-109
[14] 郑伟,孙守明,汤国建. 基于X射线脉冲星的深空探测自主导航方法[J]. 中国空间科学技术,2008,28(5):1-6
ZHENG W,SUN S M,TANG G J. Principle of deep space autonomous navigation based on X-ray pulsars[J]. Chinese Space Science and Technology,2008,28(5):1-6
[15] 苏哲,许录平,王婷. X射线脉冲星导航半物理仿真实验系统研究[J]. 物理学报,2011,60(11):827-834
SU Z,XU L P,WANG T. X-ray pulsar-based navigation semi-physical simulation experiment system[J]. Acta Physica Sinica,2011,60(11):827-834
[16] SHEIKH S I,PINES D J,RAY P S,et al. Spacecraft navigation using X-Ray pulsars[J]. Journal of Guidance Control & Dynamics,2006,29(1):49-63
PDF(1950 KB)

Accesses

Citations

Detail

Sections
Recommended

/