The Research of Temporal and Spatial Distribution of Microwave Brightness Temperature in Chang’E-4 Landing Area Based on Field Theory

LIAN Yi1,2, HE Long1, MENG Zhiguo3, PING Jingsong2, HU Shuo3, ZENG Xiaoming1

PDF(2294 KB)
PDF(2294 KB)
Journal of Deep Space Exploration ›› 2018, Vol. 5 ›› Issue (1) : 27-33. DOI: 10.15982/j.issn.2095-7777.2018.01.004

The Research of Temporal and Spatial Distribution of Microwave Brightness Temperature in Chang’E-4 Landing Area Based on Field Theory

  • LIAN Yi1,2, HE Long1, MENG Zhiguo3, PING Jingsong2, HU Shuo3, ZENG Xiaoming1
Author information +
History +

Abstract

Chang’e-4 (CE-4) probe will achieve the first soft landing on the farside of the moon in the history of mankind, and the landing zone is tentatively fixed in the Von Karman impact crater which is in the South Pole-Aitken basin. In view of the lack of field analysis of microwave radiation brightness temperature, analyzed the brightness temperature’s temporal and spatial distribution characteristics of Von Karman impact crater was analyzed based on the field and the penetrability of Chang’e Microwave radiometer. The results show that there is a significant couple mode between 3GHz diurnal brightness temperature field and 37GHz diurnal brightness temperature field, ,and the trend of brightness temperature appeared consistent in the crater. It also turns out that the area with high FeO+TiO2 (FTA) content has a higher relativity , which is the key area of brightness temperature change. Nevertheless, the FTA content does not have significant impact on the density of contours. Contrarily, the density of contours is mainly influenced by the roughness of the moon’s surface. Finally, the research provided a reference for the choice of landing zone of CE-4 probe by analyzing the temporal and spatial distribution characteristics of brightness temperature, stratigraphic unit, chemical constituents of substance and other factors in Von Karman impact crater.

Keywords

Chang’e probe / microwave radiometer / brightness temperature / SVD method

Cite this article

Download citation ▾
LIAN Yi, HE Long, MENG Zhiguo, PING Jingsong, HU Shuo, ZENG Xiaoming. The Research of Temporal and Spatial Distribution of Microwave Brightness Temperature in Chang’E-4 Landing Area Based on Field Theory. Journal of Deep Space Exploration, 2018, 5(1): 27‒33 https://doi.org/10.15982/j.issn.2095-7777.2018.01.004

References

[1] 吴伟仁,王琼,唐玉华,等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报,2017,4(02):111-117
WU W R,WANG Q,TANG Y H,et al. Design of Chang’e-4 lunar farside soft-landing mission [J]. Journal of Deep Space Exploration,2017,4(02):111-117
[2] SPUDIS P D,RIESSE R A,GILLIS J G. Ancient multiring basins on the moon revealed by clementine laser altimetry [J]. Science,1994,266:1848-1851
[3] OHTAKE M,UEMOTO K,YOKOTA Y,et al. Geologic structure generated by large-impact basin formation observed at the South Pole-Aitken basin on the Moon[J]. Geophysical Research Letters,2014,41(8):2738-2745
[4] ZUBER M T,SMITH D E,LEMOINE F G,et al. The shape and internal structure of the moon from the Clementine mission [J]. Science,1994,266:1839-1843
[5] 张健,缪秉魁,廖庆园,等. 月球南极艾特肯盆地的地质特征:探索月球深部的窗口[J]. 矿物岩石地球化学通报,2011,30(02):234-240+244
ZHANG J,MIAO B K,LIAO Q Y,et al. The geological characteristics of the South Pole-Aitken basin on the Moon:the window to explore the deep composition of the Moon [J]. The Window to Explore the Deep Composition of the Moon,2011,30(02):234-240
[6] LUCEY P G,BLEWETT D T,JOLLIFF B L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images[J]. Journal of Geophysical Research Planets,2000,105(E8):20297-20305
[7] YAN B K,WANG R S,GAN F P,et al. Minerals mapping of the lunar surface with clementine UV-VIS-NIR data based on spectra unmixing method and hapke model[C]// Lunar and Planetary Science Conference.USA:[s.n.],2010.
[8] OHTAKE M,MATSUNAGA T,HARUYAMA J,et al. The global distribution of pure anorthosite on the Moon[J]. Nature,2009,461(7261):236
[9] MENG ZHIGUO,ZHAO RUI,CAI ZHANCHUAN,et al. Microwave thermal emission at tycho area and its geological significance[C]//IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. [S.l.]:IEEE,2017.
[10] MENG Z G,ZHANG J D,CAI Z C,et al. Microwave thermal emission features of Mare orientale revealed by CELMS Data[C]//IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. [S.l.]:IEEE ,2017. DOI(identifier)10.1109/JSTARS.2017.2700397.
[11] 雷利卿,姜景山,张晓辉,等. 月球若干地区微波辐射特征研究[J]. 遥感技术与应用,2009,(04):423-434
LEI L Q,JIANG J S,ZHANG X H,et al. Microwave radiation analysis for some regions on the Moon [J]. Remote Sensing Technology and Application,2009,(04):423-434
[12] 张卫国,姜景山,刘和光,等.月球南极的微波辐射分布与异常[J]. 中国科学(D辑:地球科学),2009,39(08):1059-1068
ZHANG W G,JIANG J S,LIU H G,et al. Distribution and anomaly of microwave emission at lunar south pole [J].Sci China Ser D-Earth Sci,2009,39(08):1059-1068
[13] ZHENG Y C,TSANG K T,CHAN K L. First microwave map of the Moon with Chang’E-1 data:the role of local time in global imaging[J]. Icarus,2012,219:194-210
[14] CHAN K L,KANG T T,KONG B,et al. Lunar regolith thermal behavior revealed by Chang’E-1 microwave brightness temperature data[J]. Earth & Planetary Science Letters,2010,295(s 1-2):287-291
[15] 胡国平,陈柯,李青侠,等. 月球表面微波亮温的时变趋势[J]. 华中科技大学学报:自然科学版,2013,41(5):64-67
HU G P,CHEN K,LI Q X,et al. Diurnal variation trend of microwave brightness temperature on the moon[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2013,41(5):64-67
[16] 宫晓蕙,金亚秋. “嫦娥一号”对月球新生环行山表面热辐射“热点”与“冷点”昼夜变化的观测[J].中国科学:信息科学,2012,42(8):923-935
GONG X H,JIN Y Q. Diurnal change of thermal emission with “hot spots” and “cold spots” of fresh lunar craters observed by Chinese Chang’E-1[J].Scientic Sinica Informationis,2012,42(8):923-935
[17] 朱永超,郑永春,邹永廖. 月球表面“冷点”和“热区”研究:嫦娥二号微波亮温数据分析[J].矿物学报,2016(2):231-240
ZHU Y C,ZHENG Y C,ZOU Y L. Cold spots and warm regions on the lunar surface:analysis of brightness temperatures data from Chang’E-2 microwave cbservation[J].Acta Mineralogica Sinica,2016(2):231-240
[18] 孟治国,平劲松,徐懿,等. 厚度对月壤微波辐射亮温的影响[J]. 地理研究,2014,33(6):1015-1022
MENG Z G,PING J S,XU Y,et al. Influence of layer thickness on microwave emission of lunar regolith[J]. Geographical Research,2014,33(6):1015-1022
[19] MENG Z G,YANG G D,PING J S,et al. Influence of(FeO+TiO2)abundance on the microwave thermal emissions of lunar regolith[J]. Science China Earth Sciences,2016,59:1498-1507,doi:10.1007/s11430-016-5280-1
[20] ZHENG Y C,TSANG Z S,CHAN K L,et al. First microwave map of the Moon with Chang’E-1 data:the role of local time in global imaging [J]. Icarus,2012,219(1):194-210
[21] 陈思,孟治国,张吉栋,等. Tycho撞击坑地区微波热辐射特性研究[J]. 中国科学:物理学 力学 天文学,2016,46(2):029608
CHEN S,MENG Z G,ZHANG J D,et al. Research on microwave radiation characteristics at Tycho crater area [J]. Scientia Sinica:Physica,Mechanica & Astronomica,2016,46(2):029608
[22] FANG T,FA W. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’E-2 microwave radiometer [J]. Icarus,2014,232:34-53
[23] MENG Z G,XU Y,CAI Z C,et al. Influence of lunar topography on simulated surface temperature[J]. Advances in Space Research,2014,54(10):2131-2139
[24] ROSENBURG M A,AHARONSON O,HEAD J W,et al. Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter[J]. Journal of Geophysical Research Planets,2011,116(E2):1161-1172
[25] 严艳梓,汤国安,熊礼阳,等. 基于DEM的月球雨海地区粗糙度研究[J]. 地理研究,2014,33(8):1442-1456
YAN Y Z,TANG G A,XIONG L Y,et al. Lunar surface roughness of Mare Imbrium based on DEMs[J]. Geographical Research,2014,33(8):1442-1456
PDF(2294 KB)

Accesses

Citations

Detail

Sections
Recommended

/