Current Status and Development for Deep Space Nuclear Power Explorer

ZHU Anwen, LIU Feibiao, DU Hui, MA Shijun

PDF(4910 KB)
PDF(4910 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (5) : 405-416. DOI: 10.15982/j.issn.2095-7777.2017.05.002

Current Status and Development for Deep Space Nuclear Power Explorer

  • ZHU Anwen, LIU Feibiao, DU Hui, MA Shijun
Author information +
History +

Abstract

In deep space exploration, due to the inability to use solar power or solar energy utilization efficiency is too low, space nuclear power is needed. So far, the isotope radioisotope decay energy is mainly used for nuclear power deep space explorers exploring the Lunar surface, Mars surface, Jupiter and beyond , while decay heat energy is used for temperature control and thermoelectric power generation. The applications of space nuclear power in deep space exploration include the Lunar base project, manned Mars flight, unmanned exploration and so on, where the fission energy is adopted. The reactors used in space fission power include reactors include liquid metal cooled reactor and gas cooled reactor. The former is able to support thermoelectric, stirling and brayton power generation, while the latter is able to support brayton and MHD power generation. The deep space explorers with the fission power attract much attention recently. From the perspective of the development of space nuclear power, the radioisotope thermoelectric generator will still play an important role in this field, and large space nuclear power combined with electric propulsion system will be an important direction of future deep space exploration.

Keywords

nuclear power / deep space explorer / radioisotope thermoelectric generator / reactor

Cite this article

Download citation ▾
ZHU Anwen, LIU Feibiao, DU Hui, MA Shijun. Current Status and Development for Deep Space Nuclear Power Explorer. Journal of Deep Space Exploration, 2017, 4(5): 405‒416 https://doi.org/10.15982/j.issn.2095-7777.2017.05.002

References

[1] 吴伟仁,王倩,任保国,等. 放射性同位素热源/电源在航天任务中的应用[J]. 航天器工程,2013,22(2):1-6
Wu W R,Wang J,Ren B G,et al. Application of RHU/RTG in space missions[J]. Spacecraft Engineering,2013,22(2):1-6
[2] 康海波. 同位素电源系统研究进展[J]. 电源技术,2011,35(8):1031-1033
Kang H B. Review of isotopic power system [J]. Chinese Journal of Power Sources,2011,35(8):1031-1033
[3] 孙佳慧. 同位素核能源的空间应用前景分析[J]. 电源技术,2014,8(2):401-404
Sun J H. Prospect of radioisotope heating unit in space applications[J]. Chinese Journal of Power Sources,2014,8(2):401-404
[4] Rudd R,Hall J,Spradlin G. The voyager interstellar mission[C]//47th International Astronautical Congress. Beijing:[s. n.],1996.
[5] 邓雪梅. “旅行者”探测器的奇幻历险[J]. 世界科学,2015(9):12-14
Deng X M. Fantastic adventure of Voyager explorer [J]. World Science,2015(9):12-14
[6] 郑永春. “新视野号”探测冥王星及柯伊伯带综述[J]. 深空探测学报,2015,2(1):3-9
Zheng Y C. Review for New Horizons mission to the Pluto and Kuiper Belt[J]. Journal of Deep Space Exploration,2015,2(1):3-9
[7] 胡中为. 新视野号飞船启程探访冥王星和柯伊伯带[J]. 科学,2006,58(2):6-9
Hu Z W. New Horizons spacecraft lift-off to explore Pluto and Kuiper Belt [J]. Science,2006,58(2):6-9
[8] Kusnierkiewicz D Y,Fountain G,Guo Y,et al. The New Horizons mission to the Pluto system and the Kuiper Belt[J]. IEEEAC paper #1611,2008:1-10
[9] Cataldo R L,Bennett G L. U. S. Space radioisotope power systems and applications:past,present and future,NASA TP-2012-0000731 [R]. Washington:NASA,2012.
[10] JPL. Prometheus project:final report,NASA TP-2005-0043352 [R]. Washington:NASA,2005.
[11] Edwards D. An overview of the Jupiter Icy Moons orbiter(JIMO)mission,environments and materials challenges,NASA TM-2012-0016895 [R]. Washington:NASA,2012.
[12] 杜辉,朱安文. 核动力航天器发展研究(内部报告)[R]. 北京:中国空间技术研究院,2013.
Du H,Zhu A W. Development research of nuclear spacecraft[R]. Beijing:China Academy of Space Technology,2013.
[13] 苏著亭,杨继材,柯国土. 空间核动力[M]. 上海:上海交通大学出版社,2016.
Su Z T,Yang J C,Ke G T. Space nuclear power [M]. Shanghai:Shanghai Jiao Tong University Press,2016.
[14] Mason L S,A power conversion concept for the Juipter Ice Moons Orbiter,NASA TM-2003-212596 [R]. Washington:NASA,2003.
[15] NASA. Mars architecture steering group,human exploration of Mars design reference architecture 5.0,NASA SP-2009-566 [R]. Washington:NASA,2009.
[16] Borowski S K,McCurdy D R,Packard T W. “7-Launch” NTR space transportation system for NASA’s Mars Design Reference Architecture(DRA)5.0[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Denver,Colorado:AIAA,2009.
[17] Drake B G. Human exploration of Mars design reference architecture 5.0,NASA TP-2010-0028285 [R]. Washington:NASA,2010
[18] Borowski S K,Mccurdy D R,Packard T W. Nuclear Thermal Propulsion(NTP):a proven,growth technology for “fast transit” human mission to Mars,NASA TM-2014-218104 [R]. Washington:NASA,2014.
[19] 周杰. 反场构型预电离等离子体形成过程的数值模拟研究[D]. 武汉:华中科技大学,2014.
Zhou J. Numerical simulation of the field reversed configuration pre-ionization plasma formation [D]. Wuhan:Huazhong University of Science and Technology,2014.
[20] Williams C H,Dzinski L A,Borowski S K,et al. Nuclear fusion propulsion[C]//37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Salt Lake City:AIAA,2001.
[21] Williams C H,Borowski S K,Dudzinski L A,et al. Fast interplanetary propulsion using a spherical torus nuclear fusion reactor propulsion system[C]//AIAA Space Technology Conference & Exposition. Albuquerque,NM:AIAA,1999.
[22] Jeffrey F. Plasma physics and fusion energy [M]. Beijing:Science Press,2010.
[23] Adams R B,Alexander R A,Chapman J M. et al,Conceptual design of in-space venicles for human exploration of the outer planets,NASA TP-2003-212691 [R]. Washington:NASA,2003.
[24] Miernik J,Adams R,Cassibry J. et al,Fusion propulsion z-pinch engine concept,NASA TP-2012-002875 [R]. Washington:NASA,2012.
[25] Polsgrove T,Adams R B,Fabisinski L,et al. Z-pinch pulsed plasma propulsion technology development,NASA TP-2011-0008519 [R]. Washington:NASA,2011.
PDF(4910 KB)

Accesses

Citations

Detail

Sections
Recommended

/