Experimental Study on the Bending Creep Behavior of CFRP Tube

MA Yu1, WANG Hui2, SHAO Zhenwei3, YANG Zengqin1, SHANG Fulin1, HOU Demen1, GENG Hongbin4, LV Gang4

PDF(2994 KB)
PDF(2994 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (4) : 346-354. DOI: 10.15982/j.issn.2095-7777.2017.04.006

Experimental Study on the Bending Creep Behavior of CFRP Tube

  • MA Yu1, WANG Hui2, SHAO Zhenwei3, YANG Zengqin1, SHANG Fulin1, HOU Demen1, GENG Hongbin4, LV Gang4
Author information +
History +

Abstract

To evaluate the service reliability of Carbon Fiber Reinforced Plastic (CFRP) composite tubes used in spacecraft structure,static three-point-bending and creep tests of the CFRP tube are performed. At first,experimental tests of bending modulus and bending rupture strength,500-hour-long constant temperature creep,–60 ℃~100 ℃ and –160 ℃~80 ℃ thermal cyclic creep are conducted for the tube respectively. Based on the testing results,long-term creep deformation of the tube is predicted,using the time-temperature-stress superposition principle,the derived creep master curves as well as a phenomenal Findley model. Then,assessment on the mechanical strength and load-carrying capacity of the CFRP tube is made according to a maximum strain criterion. Results show that the CFRP tube can meet the creep deformation and strength requirements under the long-term service lifetime.

Keywords

CFRP tube / bending strength / creep property / time-temperature-stress superposition principle / load-carrying capacity assessment

Cite this article

Download citation ▾
MA Yu, WANG Hui, SHAO Zhenwei, YANG Zengqin, SHANG Fulin, HOU Demen, GENG Hongbin, LV Gang. Experimental Study on the Bending Creep Behavior of CFRP Tube. Journal of Deep Space Exploration, 2017, 4(4): 346‒354 https://doi.org/10.15982/j.issn.2095-7777.2017.04.006

References

[1] 张鹏飞,梁龙,陶积柏,等. 深空环境下热防护材料的研究及应用进展[J]. 深空探测学报,2016,3(1):77-82
Zhang P F,Liang L,Tao J B,et al. Research and development of thermal protection materials applied in deep space exploration[J]. Journal of Deep Space Exploration,2016,3(1):77-82
[2] Goertzen W K,Kessler M R. Creep behavior of carbon fiber/epoxy matrix composites [J]. Materials Science and Engineering:A,2006,421(1):217-225
[3] Petermann J,Schulte K. The effects of creep and fatigue stress ratio on the long-term behaviour of angle-ply CFRP [J]. Composite Structures,2002,57(1):205-210
[4] Nakada M,Miyano Y,Cai H,et al. Prediction of long-term viscoelastic behavior of amorphous resin based on the time-temperature superposition principle [J]. Mechanics of Time-Dependent Materials,2011,15(3):309-316
[5] Carra G,Carvelli V. Long-term bending performance and service life prediction of pultruded Glass Fibre Reinforced Polymer composites [J]. Composite Structures,2015,127:308-315
[6] Miyano Y,Nakada M,Sekine N. Accelerated testing for long-term durability of GFRP laminates for marine use [J]. Composites Part B:Engineering,2004,35(6):497-502
[7] Findley W N. Mechanism and mechanics of creep of plastics [J]. SPE Journal,1960,16(1):57-65
[8] Jia Y,Peng K,Gong X,et al. Creep and recovery of polypropylene/carbon nanotube composites [J]. International Journal of Plasticity,2011,27(8):1239-1251
[9] Yang J L,Zhang Z,Schlarb A K,et al. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II:modeling and prediction of long-term performance [J]. Polymer,2006,47(19):6745-6758
[10] McClure G,Mohammadi Y. Compression creep of pultruded E-glass-reinforced-plastic angles[J]. Journal of Materials in Civil Engineering,1995,7(4):269-276
[11] Gibson R F. Principles of composite material mechanics [M]. Boca Raton:CRC Press,2016.
[12] 罗文波,杨挺青,安群力. 非线性粘弹体的时间–温度–应力等效原理及其应用[J]. 固体力学学报,2001(3):219-224
Luo W B,Yang T Q,An Q L. Time-temperature-stress equivalence and its application to nonlinear viscoelastic materials [J]. Acta Mechanica Solida Sinica,2001(3):219-224
[13] 王初红. 高聚物长期蠕变性能的加速表征 [D]. 湖南:湘潭大学,2006.
Wang C H. An accelerated characterization of the long-term creep behavior of polymers [D]. Hunan:Xiangtan University,2006.
[14] 刘鹏飞,赵启林,王景全. 树脂基复合材料蠕变性能研究进展[J]. 玻璃钢/复合材料,2013(03):109-117
Liu P F,Zhao Q L,Wang J Q. Process in research of the creep behavior of resin composites [J]. Fiber Reinforced Plastics/Composites,2013 (03):109-117
[15] GB/T 1456-2005,夹层结构弯曲性能试验方法[S].
[16] GB/T 1449-2005,纤维增强塑料弯曲性能试验方法[S].
[17] 周祝林. 国家标准GB 1456扩大应用范围 [J]. 玻璃钢/复合材料,1998(02):18-20
Zhou Z L. Expanding application scope of national standard GB1456 [J]. Fiber Reinforced Plastics/Composites,1998(02):18-20
[18] 文献民,王本利,马兴瑞. 复合材料圆管构件等效模量的计算方法[J]. 复合材料学报,1999(02):136-140
Wen X M,Wang B L,Ma X R. On the effective modulus of composite tubulus element [J]. Acta Materiae Compositae Sinica,1999(02):136-140
[19] 易洪雷,周祝林,吴妙生. 复合材料圆管弯曲强度研究[J]. 玻璃钢,2008(02):1-10
Yi H L,Zhou Z L,Wu M S. Study on bending strength of fiber-reinforced composite circular tube [J]. Fiber Reinforced Plastics,2008(02):1-10
[20] Drozdov A D,Lejre A L H. Viscoelasticity,viscoplasticity,and creep failure of polypropylene/clay nanocomposites [J]. Composites Science and Technology,2009,69(15):2596-2603
[21] Biswas K K,Somiya S,Endo J. Creep behavior of metal fiber-PPE composites and effect of test surroundings [J]. Mechanics of Time-Dependent Materials,1999,3(1):85-101
[22] Sakai T,Somiya S. Analysis of creep behavior in thermoplastics based on visco-elastic theory [J]. Mechanics of Time-Dependent Materials,2011,15(3):293-308
[23] Hartmann B,Haque M A. Equation of state for polymer solids [J]. Journal of Applied Physics,1985,58(8):2831-2836
[24] Akinay A E,Brostow W. Long-term service performance of polymeric materials from short-term tests:prediction of the stress shift factor from a minimum of data [J]. Polymer,2001,42(10):4527-4532
[25] 陈烈民,杨宝宁. 复合材料的力学分析[M]. 北京:中国科学技术出版社,2010.
PDF(2994 KB)

Accesses

Citations

Detail

Sections
Recommended

/