The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission

YE Binlong1,2, ZHAO Jiannan1,2, HUANG Jun1,2

PDF(5695 KB)
PDF(5695 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (4) : 310-324. DOI: 10.15982/j.issn.2095-7777.2017.04.002

The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission

  • YE Binlong1,2, ZHAO Jiannan1,2, HUANG Jun1,2
Author information +
History +

Abstract

The important discoveries of Mars exploration in the past 20 years and the major unsolved questions on Martian life, climate and geology were reviewed. The scientific goals, payloads information and engineering constrains of the National Aeronautics and Space Administration (NASA) 2020 Mars mission were presented. In addition, the geologic characteristics of the top 8 candidate landing sites selected by hundreds of planetary scientists in three landing site selection workshops were described. Three candidate landing zones for China’s 2020 Mars mission were proposed based on the different mission goals: 1) addressing key life, climate and geology questions; 2) resource reconnaissance for future human missions; 3) engineering demonstration.

Keywords

Mars exploration / landing site selection / planetary geology / astrobiology / planetary climate

Cite this article

Download citation ▾
YE Binlong, ZHAO Jiannan, HUANG Jun. The Status of NASA Mars 2020 Rover Landing Site Selection and Some Thoughts on the Landing Part of China 2020 Mars Mission. Journal of Deep Space Exploration, 2017, 4(4): 310‒324 https://doi.org/10.15982/j.issn.2095-7777.2017.04.002

References

[1] Smith D E,Zuber M T,Frey H V,et al. Mars Orbiter Laser Altimeter:experiment summary after the first year of global mapping of Mars[J]. Journal of Geophysical Research-Planets,2001,106(E10):23689-23722
[2] Malin M C,Edgett K S. Mars Global Surveyor Mars Orbiter Camera:interplanetary cruise through primary mission[J]. Journal of Geophysical Research-Planets,2001,106(E10):23429-23570
[3] Christensen P R,Bandfield J L,Smith M D,et al. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data[J]. Journal of Geophysical Research,2000,105(E4):9609-9621
[4] Ehlmann B L,Edwards C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences,2014,42:291-315
[5] Bibring J P,Langevin Y,Mustard J F,et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data[J]. Science,2006,312(5772):400-404
[6] Boynton W V,Taylor G J,Evans L G,et al. Concentration of H,Si,Cl,K,Fe,and Th in the low- and mid-latitude regions of Mars[J]. Journal of Geophysical Research:Planets,2007,112(E12):n/a-n/a
[7] Mitrofanov I,Anfimov D,Kozyrev A,et al. Maps of subsurface hydrogen from the high energy neutron detector,Mars Odyssey[J]. Science,2002,297(5578):78-81
[8] Byrne S,Dundas C M,Kennedy M R,et al. Distribution of mid-latitude ground ice on Mars from new impact craters[J]. Science,2009,325(5948):1674-1676
[9] Bandfield J L. High-resolution subsurface water-ice distributions on Mars[J]. Nature,2007,447(7140):64-67
[10] Acuna M H,Connerney J,Wasilewski P A,et al. Magnetic field and plasma observations at Mars:Initial results of the Mars Global Surveyor mission[J]. Science,1998,279(5357):1676-1680
[11] Zuber M T,Solomon S C,Phillips R J,et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity[J]. Science,2000,287(5459):1788-1793
[12] Jakosky B M,Lin R P,Grebowsky J M,et al. The Mars atmosphere and volatile evolution(MA-VEN)mission[J]. Space Science Reviews,2015,195(1-4):3-48
[13] Smith M D. Interannual variability in TES atmospheric observations of Mars during 1999-2003[J]. Icarus,2004,167(1):148-165
[14] Jakosky B M,Grebowsky J M,Luhmann J G,et al. Initial results from the MAVEN mission to Mars[J]. Geophysical Research Letters,2015,42(21):8791-8802
[15] Bougher S,Jakosky B,Halekas J,et al. Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability[J]. Science,2015,350(6261):d459
[16] Christensen P R. Water at the poles and in permafrost regions of Mars[J]. Elements,2006,2(3):151-155
[17] Martin-Torres F J,Zorzano M,Valentin-Serrano P,et al. Transient liquid water and water activity at Gale crater on Mars[J]. Nature Geoscience,2015,8(5):357-361
[18] Michalski J R,Cuadros J,Niles P B,et al. Groundwater activity on Mars and implications for a deep biosphere[J]. Nature Geoscience,2013,6(2):133-138
[19] Council N R. An Astrobiology Strategy for the Exploration of Mars[Z]. Washington,D.C.:[s. n.],2007.
[20] Mcewen A S,Ojha L,Dundas C M,et al. Seasonal Flows on Warm Martian Slopes[J]. Science,2011,333(6043):740
[21] Mcewen A S,Dundas C M,Mattson S S,et al. Recurring slope lineae in equatorial regions of Mars[J]. Nature geoscience,2014,7(1):53-58
[22] Ojha L,Wilhelm M B,Murchie S L,et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars[J]. Nature Geoscience. 2015,8(11):829-832
[23] Mumma M J,Villanueva G L,Novak R E,et al. Strong Release of Methane on Mars in Northern Summer 2003[J]. Science,2009,323(5917):1041-1045
[24] Laskar J,Correia A,Gastineau M,et al. Long term evolution and chaotic diffusion of the insola-tion quantities of Mars[J]. Icarus,2004,170(2):343-364
[25] Forget F,Haberle R M,Montmessin F,et al. Formation of glaciers on Mars by atmospheric pre-cipitation at high obliquity[J]. science,2006,311(5759):368-371
[26] Schorghofer N. Dynamics of ice ages on Mars[J]. Nature,2007,449(7159):192-194
[27] Grotzinger J P,Arvidson R E,Bell J F,et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system,Burns formation,Meridiani Planum,Mars[J]. Earth and Planetary Science Letters,2005,240(1):11-72
[28] Andrews-Hanna J C,Zuber M T,Arvidson R E,et al. Early Mars hydrology:Meridiani playa de-posits and the sedimentary record of Arabia Terra[J]. Journal of Geophysical Research-Planets,2010,115
[29] Walter M R,Desmarais D J. Preservation of Biological Information in Thermal-Spring Deposits - Developing a Strategy for the Search for Fossil Life on Mars[J]. Icarus,1993,101(1):129-143
[30] Segura T L,Toon O B,Colaprete A. Modeling the environmental effects of moderate-sized im-pacts on Mars[J]. Journal of Geophysical Research-Planets,2008,113(E11)
[31] Steele A. Astrobiology Sample Acquisition and Return. White paper submitted to the Planetary Science Decadal Survey[Z]. Washington,D.C.:[s. n.],2009.
[32] Carr M H,Head J W. Oceans on Mars:an assessment of the observational evidence and possible fate[J]. Journal of Geophysical Research Atmospheres,2003,108(5042):127-143
[33] Arvidson R E,Ruff S W,Morris R V,et al. Spirit Mars rover mission to the Columbia hills,gusev crater:mission overview and selected results from the Cumberland Ridge to Home Plate[J]. Journal of Geophysical Research-Planets,2008,113(E12)
[34] Xiao L,Wang J,Dang Y,et al. A new terrestrial analogue site for Mars research:The Qaidam Basin,Tibetan Plateau(NW China)[J]. Earth-Science Reviews,2017,164:84-101
[35] Cantor B A,Kanak K M,Edgett K S. Mars Orbiter Camera observations of Martian dust devils and their tracks(September 1997 to January 2006)and evaluation of theoretical vortex models[J]. Journal of Geophysical Research:Planets,2006,111(E12):n/a-n/a
[36] Basu S,Wilson J,Richardson M,et al. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM[J]. Journal of Geophysical Research:Planets,2006,111(E9):75-83
[37] Newman C E,Lewis S R,Read P L,et al. Modeling the Martian dust cycle,1. Representations of dust transport processes[J]. Journal of Geophysical Research:Planets,2002,107(E12):6-1-6-18
[38] Hourdin F,Le Van P,Forget F,et al. Meteorological variability and the annual surface pressure cycle on Mars[J]. Journal of the atmospheric sciences,1993,50(21):3625-3640
[39] Bibring J P,Langevin Y,Poulet F,et al. Perennial water ice identified in the south polar cap of Mars[J]. Nature,2004,428(6983):627-630
[40] Clifford S M,Crisp D,Fisher D A,et al. The state and future of Mars polar science and explora-tion[J]. Icarus,2000,144(2):210-242
[41] Levrard B,Forget F,Montmessin F,et al. Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model[J]. Journal of Geophysical Research:Planets,2007,112(E6)
[42] Laskar J,Levrard B,Mustard J F. Orbital forcing of the Martian polar layered deposits[J]. Nature,2002,419(6905):375
[43] Mccleese D J,Heavens N G,Schofield J T,et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder:Seasonal variations in zonal mean tem-perature,dust,and water ice aerosols[J]. Journal of Geophysical Research:Planets,2010,115(E12):n/a-n/a
[44] Forget F,Montmessin F,Bertaux J,et al. Density and temperatures of the upper Martian atmos-phere measured by stellar occultations with Mars Express SPICAM[J]. Journal of Geophysical Re-search:Planets,2009,114(E1)
[45] Schneider N M,Deighan J I,Jain S K,et al. Discovery of diffuse aurora on Mars[J]. Science,2015,350(6261):d313
[46] Andersson L,Weber T D,Malaspina D,et al. Dust observations at orbital altitudes surrounding Mars[J]. Science,2015,350(6261):d398
[47] Jakosky B M,Slipski M,Benna M,et al. Mars’ atmospheric history derived from up-per-atmosphere measurements of 38Ar/36Ar[J]. Science,2017,355(6332):1408-1410
[48] Lefevre F,Forget F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics[J]. Nature,2009,460(7256):720-723
[49] Silvestro S,Fenton L K,Vaz D A,et al. Ripple migration and dune activity on Mars:Evidence for dynamic wind processes[J]. Geophysical Research Letters,2010,37(20)
[50] Hansen C J,Diniega S,Bridges N,et al. Agents of change on Mars’ northern dunes:CO 2 ice and wind[J]. Icarus,2015,251:264-274
[51] Hansen C J,Byrne S,Portyankina G,et al. Observations of the northern seasonal polar cap on Mars:I. Spring sublimation activity and processes[J]. Icarus,2013,225(2):881-897
[52] Malin M C,Edgett K S. Evidence for persistent flow and aqueous sedimentation on early Mars[J]. Science,2003,302(5652):1931-1934
[53] Wordsworth R D. The climate of early Mars[J]. Annual Review of Earth and Planetary Sciences,2016,44:381-408
[54] Johnson S S,Mischna M A,Grove T L,et al. Sulfur-induced greenhouse warming on early Mars[J]. Journal of Geophysical Research-Planets,2008,113(E8)
[55] Forget F,Pierrehumbert R T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation[J]. Science,1997,278(5341):1273-1276
[56] Solomon S C,Aharonson O,Aurnou J M,et al. New perspectives on ancient Mars[J]. Science,2005,307(5713):1214-1220
[57] Mustard J F,Murchie S L,Pelkey S M,et al. Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument[J]. Nature,2008,454(7202):305-309
[58] Carr M H. The Surface of Mars[J]. Cambridge:Cambridge University Press,2006.
[59] Jakosky B M,Phillips R J. Mars’ volatile and climate history[J]. nature,2001,412(6843):237-244
[60] Osterloo M M,Hamilton V E,Bandfield J L,et al. Chloride-bearing materials in the southern highlands of Mars[J]. Science,2008,319(5870):1651-1654
[61] Murchie S L,Mustard J F,Ehlmann B L,et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter[J]. Journal of Geophysical Re-search-Planets,2009,114(E2):0-6
[62] Ehlmann B L,Edwards C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences,2014,42:291-315
[63] Mustard J F,Murchie S L,Pelkey S M,et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument[J]. Nature,2008,454(7202):305-309
[64] Tosca N J,Mclennan S M,Clark B C,et al. Geochemical modeling of evaporation processes on Mars:Insight from the sedimentary record at Meridiani Planum[J]. Earth and Planetary Science Letters,2005,240(1):122-148
[65] Tosca N J,Mclennan S M. Chemical divides and evaporite assemblages on Mars[J]. Earth and Planetary Science Letters,2006,241(1-2):21-31
[66] King P L,Mcsween H Y. Effects of H2O,pH,and oxidation state on the stability of Fe minerals on Mars[J]. Journal of Geophysical Research:Planets,2005,110(E12):10.1029/2005JE002482
[67] Ehlmann B L,Mustard J F,Murchie S L,et al. Orbital Identification of Carbonate-Bearing Rocks on Mars[J]. Science,2008,322(5909):1828-1832
[68] Morris R V,Ruff S W,Gellert R,et al. Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover[J]. Science,2010,329(5990):421-424
[69] Christensen P R,Morris R V,Lane M D,et al. Global mapping of Martian hematite mineral de-posits:Remnants of water-driven processes on early Mars[J]. Journal of Geophysical Research-Planets,2001,106(E10):23873-23885
[70] Christensen P R,Wyatt M B,Glotch T D,et al. Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover[J]. Science,2004,306(5702):1733-1739
[71] Klingelh?fer G,Morris R V, Bernhardt B,et al. Jarosite and hematite at meridiani planum from opportunity’s m?ssbauer spectrometer [J]. Science,2004,306(5702):1740-1745
[72] Mclennan S M,Bell J F,Calvin W M,et al. Provenance and diagenesis of the evaporite-bearing Burns formation,Meridiani Planum,Mars[J]. Earth and Planetary Science Letters,2005,240(1):95-121
[73] Smith P H,Tamppari L K,Arvidson R E,et al. H2O at the Phoenix landing site[J]. Science,2009,325(5936):58-61
[74] Hecht M H,Kounaves S P,Quinn R C,et al. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site[J]. Science,2009,325(5936):64-67
[75] Grotzinger J P,Gupta S,Malin M C,et al. Deposition,exhumation,and paleoclimate of an ancient lake deposit,Gale crater,Mars[J]. Science,015,350(6257):c7575
[76] Stanley S,Elkins-Tanton L,Zuber M T,et al. Mars’ paleomagnetic field as the result of a sin-gle-hemisphere dynamo[J]. Science,2008,321(5897):1822-1825
[77] Stanley S,Elkins-Tanton L,Zuber M T,et al. Mars’ paleomagnetic field as the result of a sin-gle-hemisphere dynamo[J]. Science,2008,321(5897):1822-1825
[78] Golombek M,Grant J,Kipp D,et al. Selection of the Mars Science Laboratory landing site[J]. Space Science Reviews,2012,170(1-4):641-737
[79] Fergason R L,Christensen P R,Kieffer H H. High‐resolution thermal inertia derived from the Thermal Emission Imaging System(THEMIS):Thermal model and applications[J]. Journal of Geo-physical Research:Planets,2006,111(E12):107-108
[80] Goudge T A,Mustard J F,Head J W,et al. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system,Mars[J]. Journal of Geophysical Research:Planets,2015,120(4):775-808
[81] Fassett C I,Head J W. Fluvial sedimentary deposits on Mars:Ancient deltas in a crater lake in the Nili Fossae region[J]. Geophysical Research Letters,2005,32(14):190-194
[82] Ehlmann B L,Mustard J F,Fassett C I,et al. Clay minerals in delta deposits and organic preserva-tion potential on Mars[J]. Nature Geoscience,2008,1(6):355-358
[83] Schon S C,Head J W,Fassett C I. An overfilled lacustrine system and progradational delta in Jezero crater,Mars:Implications for Noachian climate[J]. Planetary and Space Science,2012,67(1):28-45
[84] Goudge T A,Mustard J F,Head J W,et al. Constraints on the history of open‐basin lakes on Mars from the composition and timing of volcanic resurfacing[J]. Journal of Geophysical Research:Planets,2012,117(E12):382-385
[85] Ehlmann B L,Mustard J F,Clark R N,et al. Evidence for low-grade metamorphism,hydrothermal alteration,and diagenesis on Mars from phyllosilicate mineral assemblages[J]. Clays and Clay Miner-als,2011,59(4):359-377
[86] Ehlmann B L,Mustard J F,Murchie S L,et al. Subsurface water and clay mineral formation dur-ing the early history of Mars[J]. Nature,2011,479(7371):53-60
[87] Mustard J F,Ehlmann B L,Murchie S L,et al. Composition,morphology,and stratigraphy of Noachian crust around the Isidis basin[J]. Journal of Geophysical Research:Planets,2009,114(E2)
[88] Saper L,Mustard J F. Extensive linear ridge networks in Nili Fossae and Nilosyrtis,Mars:impli-cations for fluid flow in the ancient crust[J]. Geophysical Research Letters,2013,40(2):245-249
[89] Ehlmann B L,Mustard J F. An in‐situ record of major environmental transitions on early Mars at Northeast Syrtis Major[J]. Geophysical research letters,2012,39(11)
[90] Ruff S W,Farmer J D,Calvin W M,et al. Characteristics,distribution,origin,and significance of opaline silica observed by the Spirit rover in Gusev crater,Mars[J]. Journal of Geophysical Research,2011,116(4):287-296
[91] Ruff S W,Farmer J D. Evidence for an Alkali Chloride Hydrothermal System in the Columbia Hills,Mars[C]//Lunar & Planetary Science Conference.[S.l.]:[s.n.],2016.
[92] Carter J,Poulet F. Orbital identification of clays and carbonates in Gusev crater[J]. Icarus,2012,219(1):250-253
[93] Board S S,National R C. Vision and voyages for planetary science in the decade 2013-2022[M]. [S. l.]:National Academies Press,2012.
[94] Huang J,Salvatore M R,Christensen P R,et al. Chlorides Predated Clay in a Lacustrine Environ-ment on Mars and Its Astrobiology Application[Z]. Houston:Lunar and Planetary Institute,2015.
[95] Plaut J J,Safaeinili A,Holt J W,et al. Radar evidence for ice in lobate debris aprons in the mid‐northern latitudes of Mars[J]. Geophysical research letters,2009,36(2):349-363
[96] Christensen P R,Ruff S W. Formation of the hematite‐bearing unit in Meridiani Planum:Evi-dence for deposition in standing water[J]. Journal of Geophysical Research:Planets,2004,109(E8):217-228
[97] Rogers A D,Aharonson O. Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements[J]. Journal of Geophysical Research:Planets. 2008,113(E6):2556-2572
[98] Grant J A,Irwin R P,Wilson S A,et al. A lake in Uzboi Vallis and implications for Late Noa-chian–Early Hesperian climate on Mars[J]. Icarus. 2011,212(1):110-122
[99] Pondrelli M,Rossi A P,Marinangeli L,et al. Evolution and depositional environments of the Eberswalde fan delta,Mars[J]. Icarus,2008,197(2):429-451
[100] Farrand W H,Glotch T D,Rice J W,et al. Discovery of jarosite within the Mawrth Vallis region of Mars:Implications for the geologic history of the region[J]. Icarus,2009,204(2):478-488
[101] Loizeau D,Mangold N,Poulet F,et al. Phyllosilicates in the Mawrth Vallis region of Mars[J]. Journal of Geophysical Research:Planets, 2007,112(E8):640-641
[102] Bishop J L,Dobrea E Z N,Mckeown N K,et al. Phyllosilicate diversity and past aqueous activ-ity revealed at Mawrth Vallis,Mars[J]. Science,2008,321(5890):830-833
[103] Mckeown N K,Bishop J L,Noe Dobrea E Z,et al. Characterization of phyllosilicates observed in the central Mawrth Vallis region,Mars,their potential formational processes,and implications for past climate[J]. Journal of Geophysical Research:Planets,2009,114(E2)337-343
[104] Grant J A,Irwin R P,Grotzinger J P,et al. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater,Mars[J]. Geology,2008,36(3):195-198
[105] Grant J A,Wilson S A. Late alluvial fan formation in southern Margaritifer Terra,Mars[J]. Ge-ophysical Research Letters,2011,38(8):L08201
[106] Moore J M,Howard A D,Dietrich W E,et al. Martian layered fluvial deposits:Implications for Noachian climate scenarios[J]. Geophysical Research Letters,2003,30(24):PLA6-1
[107] Mustard J F,Murchie S L,Pelkey S M,et al. Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument[J]. Nature,2008,454(7202):305-309
[108] Ehlmann B L,Mustard J F,Murchie S L. Geologic setting of serpentine deposits on Mars[J]. Geophysical research letters,2010,37(6):53-67
[109] Ehlmann B L,Mustard J F,Swayze G A,et al. Identification of hydrated silicate minerals on Mars using MRO‐CRISM:Geologic context near Nili Fossae and implications for aqueous altera-tion[J]. Journal of Geophysical Research:Planets,2009,114(E2):538-549
[110] Ehlmann B L,Mustard J F,Murchie S L,et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011,479(7371):53-60
[111] Quantin C, Allemand P, Mangold N, et al. Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars[J]. Journal of Geophysical Research Planets, 2005, 110(E12):4919-4934.
[112] Dromart G,Quantin C,Broucke O. Stratigraphic architectures spotted in southern Melas Chasma,Valles Marineris,Mars[J]. Geology,2007,35(4):363-366
PDF(5695 KB)

Accesses

Citations

Detail

Sections
Recommended

/