Research Progress of Small Body Surface Motion Technologies

YU Zhengshi1,2,3, ZHU Shengying1,2,3, CUI Pingyuan1,2,3, LIU Yanjie1,2,3

PDF(2162 KB)
PDF(2162 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (4) : 301-309. DOI: 10.15982/j.issn.2095-7777.2017.04.001

Research Progress of Small Body Surface Motion Technologies

  • YU Zhengshi1,2,3, ZHU Shengying1,2,3, CUI Pingyuan1,2,3, LIU Yanjie1,2,3
Author information +
History +

Abstract

Based on small body surface exploration missions carried out so far and future development trends of small body surface exploration technology, the necessity and key technologies of small body surface motion are elaborated. Firstly, the difficulties and challenges encountered in small body surface explorations are summarized. Then, thekey technologies related to the small body surface motion are outlined, and the research progress of these technnologies are surveyed. Finally, future research focuses and development trends of small body landing technologies are discussed.

Keywords

small body / surface motion / configuration design / navigation and guidance

Cite this article

Download citation ▾
YU Zhengshi, ZHU Shengying, CUI Pingyuan, LIU Yanjie. Research Progress of Small Body Surface Motion Technologies. Journal of Deep Space Exploration, 2017, 4(4): 301‒309 https://doi.org/10.15982/j.issn.2095-7777.2017.04.001

References

[1] Wu W,Liu W,Qiao D,et al. Investigation on the development of deep space exploration[J]. Science China Technological Sciences,2012,55(4):1086-1091
[2] 崔平远,袁旭,朱圣英,等. 小天体自主附着技术研究进展[J]. 宇航学报,2016,37(7):759-767
Cui P Y,Yuan X,Zhu S Y,et al.Research progress of small body autonomous landing techniques[J].Journal of Astronautics,2016,37(7):759-767
[3] 崔平远,乔栋,朱圣英,等. 行星着陆探测中的动力学与控制研究进展[J]. 航天器环境工程,2014,31(01):1-8
Cui P Y,Qiao D,Zhu S Y,et al.Research porgress of dynamics and control for planetary landing[J].Spacecraft Environment Engineering,2014,31(01):1-8
[4] Herrmann F,Kuss S,Schaefer B.Mobility challenges and possible solutions for low-gravity planetary body exploration[C]//11th Symp. on Adv. Space Tech. in Robot. Netherlands:[s. n.],2011.
[5] 崔平远,乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展,2013(05):526-539
Cui P Y,Qiao D.State-of-the-art and prospects for orbital dynamics and control near small celestial bodies[J]. Advances In Mechanics,2013(05):526-539
[6] Boyce W. Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid[J]. Celestial Mechanics and Dynamical Astronomy,1997,67(2):107-110
[7] Cui P,Ge D,Gao A. Optimal landing site selection based on safety index during planetary descent[J]. Acta Astronautica,2017,132:326-336
[8] Werner R A,Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of Asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy,1996,65(3):313-344
[9] Werner R A. The gravitational potential of a homogeneous polyhedron[J]. Celestial Mechanics and Dynamical Astronomy,1994,59(3):253-278
[10] Miller J K,Konopliv A S,Antreasian P G. Determination of shape,gravity,and rotational state of Asteroid 433 Eros[J]. Icarus,2002,155(1):3-17
[11] Park R S,Werner R A,Bhaskaran S. Estimating small-body gravity field from shape model and navigation data[J]. Journal of Guidance,Control,and Dynamics,2010,33(1):212-221
[12] Zeng X,Jiang F,Li J,et al. Study on the connection between the rotating mass dipole and natural elongated bodies[J]. Astrophysics and Space Science,2015,356(1):29-42
[13] Boyce W. Comment on a formula for the gravitational harmonic coefficients of a triaxial ellipsoid[J]. Celestial Mechanics and Dynamical Astronomy,1997,67(2):107-110
[14] Scheeres D J,Williams B G,Miller J K. Evaluation of the dynamic environment of an asteroid:applications to 433 Eros[J]. Journal of Guidance,Control,and Dynamics,2000, 23(3):466-475
[15] Dechambre D,Scheeres D J. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients[J]. Celestial Mechanics and Dynamical Astronomy,2002,387(3):1114-1122
[16] Takahashi Y,Scheeres D J,Werner R A. Surface gravity fields for asteroids and comets[J]. Journal of Guidance,Control,and Dynamics,2013,36(2):362-374
[17] Takahashi Y,Scheeres D J. Small body surface gravity fields via spherical harmonic expansions[J]. Celestial Mechanics and Dynamical Astronomy, 2014,119(2):169-206
[18] Guibout V,Scheeres D J. Stability of surface motion on a rotating ellipsoid[J]. Celestial Mechanics and Dynamical Astronomy,2003,87(3):263-290
[19] Bellerose J,Scheeres D J. Dynamics and control for surface exploration of small bodies[C]//AIAA/AAS 2008 Astrodynamics Specialist Conference. Honolulu,Hawaii:AIAA,2008.
[20] Liu X,Baoyin H,Ma X. Dynamics of surface motion on a rotating massive homogeneous body[J]. Science China Physics,Mechanics and Astronomy,2013(4):818-829
[21] Yu Y,Baoyin H. Modeling of migrating grains on asteroid’s surface[J]. Astrophysics and Space Science,2015,1355(1):43-56
[22] Yu Y,Baoyin H. Routing the asteroid surface vehicle with detailed mechanics[J]. Acta Mechanica Sinica,2014,30(3):301-309
[23] Yu Y,Richardson D C,Michel P,et al. Numerical predictions of surface effects during the 2029 close approach of Asteroid 99942 Apophis [J]. Icarus,2014,242:82-96
[24] Jiang Y,Zhang Y,Baoyin H. Surface motion relative to the irregular celestial bodies[J]. Planetary and Space Science,2016,(127):33-43
[25] Biele J,Ulamec S,Richter L,et al. The putative mechanical strength of comet surface material applied to landing on a comet[J]. Acta Astronaut,2009,65:1168-1178
[26] Witte L,Schroeder S,Kempe H,et al. Experimental investigations of the comet lander philae touchdown dynamics[J]. Journal of Spacecraft and Rockets,2014,51(6):1885-1894
[27] Kemurdzhian A L,Brodskii P N,Gromov V V,et al. A moving vehicle for studying the surface of phobos(PROP)[C]//Instrumentation and Methods for Space Exploration Moscow. Izdatel’stvo Nauka:[s. n.],1989:136-141.
[28] Britt R Z,Zakharov A V. Brief history of the phobos mission[J]. Nature,1989,341(6243):581-585
[29] Yoshimitsu T,Kubota T,Nakatani I,et al. Micro-hopping robot for asteroid exploration[J]. Acta Astronautica,2003,52:441-446
[30] Kubota T,Yoshimitsu T. Intelligent unmanned explorer for deep space exploration[C]//International Conference on Intelligent Unmanned Systems.Bali,Indonesia:ICIUS,2007.
[31] Yoshikawa M,Minamino H,Tsuda Y,et al. Hayabusa2-new challenge of next asteroid sample return mission[C]//Asteroids,Comets,Meteors 2012.Niigata,Japan:[s. n.],2012.
[32] Reill J,Sedlmayr H J,Ku? S,et al. Development of a mobility drive unit for low gravity planetary body exploration[C]//12th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk,Netherlands:[s. n.],2013.
[33] Dietze C,Herrmann S,Ku? F,et al. Landing and mobility concept for the small asteroid lander MASCOT on Asteroid 1999 JU3[C]//61st International Astronautical Congress.Prague,CZ:[s. n.],2010.
[34] Reill J,Sedlmayr H J,Neugebauer P,et al. MASCOT—asteroid lander with innovative mobility mechanism[C]//13th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk,Netherlands:[s. n.],2015.
[35] Ulamec S,Kucherenko V,Biele J,et al. Hopper concepts for small body landers[J]. Advances in Space Research,2011,47(3):428-439
[36] Pavone M,Castillo-Rogez J C,Nesnas I A D,et al. Spacecraft/rover hybrids for the exploration of small solar system bodies[C]//IEEE Aerospace Conference.[S. l.]:IEEE,2013.
[37] Fiorini P,Burdick J. The development of hopping capabilities for small robots[J]. Autonomous Robots,2003,14(2):239-254
[38] Hand E. Philae probe makes bumpy touchdown on a comet[J]. Science,2014,346(6212):900-901
[39] Witte L,Roll R,Biele J,et al. Rosetta lander philae–landing performance and touchdown safety assessment[J]. Acta Astronautica,2016,125:149-160
[40] Ulamec S,Biele J. Surface elements and landing strategies for small bodies missions–philae and beyond[J]. Advances in Space Research,2009,44:847-858
[41] Biele J,Ulamec S,Maibaum M,et al. The landing(s)of philae and inferences about comet surface mechanical properties[J]. Science,2015,349(6247):aaa9816
[42] So E W Y,Yoshimitsu T,Kubota T. Relative localization of a hopping rover on an asteroid surface using optical flow[C]//SICE Annual Conference.Tokyo,Japan:2008.
[43] So E W Y,Yoshimitsu T,Kubota T. Visual odometry for a hopping rover on an asteroid surface using multiple monocular cameras[J]. Advanced Robotics,2011,25(6-7):893-921
[44] 刘延杰,朱圣英,崔平远. 小天体安全着陆与表面探测控制方法研究[J]. 深空探测学报,2016,3(4):370-376
Liu Y J,Zhu S Y,Cui P Y. A pulse control strategy of landers for hopping exploration on small bodies[J]. Journal of Deep Space Exploration,2016,3(4):370-376
[45] Shen H,Zhang T,Li Z,et al. Multiple-hopping trajectories near a rotating asteroid[J]. Astrophysics and Space Science,2017,362:45
[46] Liu Y,Zhu S,Cui P,et al. Hopping trajectory optimization for surface exploration on small bodies[J]. Advances in Space Research,2017,60(1):90-102
[47] Cui P,Liu Y,Yu Z,et al. Intelligent landing strategy for the small bodies:from passive bounce to active trajectory control[J]. Acta Astronautica,2017(137):232-242
[48] Broschart S B,Scheeres D J. Contrlo of hovering spacecraft near small bodies:application to Asteroid 25143 Itokawa[J]. Journal of Guidance,Control,and Dynamics,2005,28(2):343-354
[49] Kubota T,Otsuki M,Hashimoto T,et al. Touchdown dynamics for sampling in Hayabusa Mission[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Keystone,Colorado:AIAA,2006.
[50] Sawai S,Kawaguchi J,Scheeres D J,et al. Development of a target marker for landing on asteroids[J]. Journal of Spacecraft and Rockets,2001,38(4):601-608
[51] Berry K,Sutter B,May A,et al. OSIRIS-REx Touch-And-Go(TAG)mission design and analysis[C]//36th Annual AAS Guidance and Control Conference.Breckenridge,Colorado:AAS,2013.
[52] Bonitz R.The brush wheel sampler–a sampling device for small-body touch-and-go missions[C]//Aerospace Conference.[S. l.]:IEEE,2012.
[53] Tardivel S,Scheeres D J,Michel P,et al. Contact motion on surface of asteroid[J]. Journal of Spacecraft and Rockets,2014,51(6):1857-1871
[54] Mège D,Gurgurewicz J,Grygorczuk J,et al. The Highland Terrain Hopper(HOPTER):concept and use cases of a new locomotion system for the exploration of low gravity solar system bodies[J]. Acta Astronautica,2016,121:200-220
[55] Yoshida K,Maruki T,Yano H. A novel strategy for asteroid exploration with a surface robot surgery[C]//34th COSPAR Scientific Assembly,The Second World Space Congress. Houston:[s. n],2002
PDF(2162 KB)

Accesses

Citations

Detail

Sections
Recommended

/