Autonomous Navigation of Three-Body Trajectory Based on Asymmetric Gravity Field

WANG Yamin1,2, LIU Yinxue3, JIANG Jun1,2, SUN Yukun1,2, ZHANG Yonghe1,2

PDF(8488 KB)
PDF(8488 KB)
Journal of Deep Space Exploration ›› 2017, Vol. 4 ›› Issue (1) : 26-30,37. DOI: 10.15982/j.issn.2095-7777.2017.01.004

Autonomous Navigation of Three-Body Trajectory Based on Asymmetric Gravity Field

  • WANG Yamin1,2, LIU Yinxue3, JIANG Jun1,2, SUN Yukun1,2, ZHANG Yonghe1,2
Author information +
History +

Abstract

In this paper,the autonomous orbital determination method with the background of communication relay net for the Moon is investigated. Two satellites,distributing on a lunar polar orbit and an Earth-Moon L2 Halo orbit,are proposed to cover the far side of the Moon and the lunar polar area. Based on the asymmetric three-body gravity field,the absolute orbital determination can be done by the sole satellite-satellite ranging. The autonomous orbital determination will contribute significantly to the autonomous management of deep space spacecraft. Numerical simulation indicates that the position error and velocity error can be reduced to the order of 100 m and 1cm/s respectively. This orbital determination method can be expanded to the autonomous navigation of multiple satellites movements around an irregular asteroid.

Keywords

satellite-to-satellite tracking / autonomous navigation / Earth–Moon system / communication relay / deep space exploration

Cite this article

Download citation ▾
WANG Yamin, LIU Yinxue, JIANG Jun, SUN Yukun, ZHANG Yonghe. Autonomous Navigation of Three-Body Trajectory Based on Asymmetric Gravity Field. Journal of Deep Space Exploration, 2017, 4(1): 26‒30,37 https://doi.org/10.15982/j.issn.2095-7777.2017.01.004

References

[1] Farquhar R W. Lunar communications with libration-point satellites [J]. Journal of Spacecraft and Rockets,1967,4(10):1383-1384
[2] Gordon D P. Transfers to Earth-Moon L2 Halo orbits using lunar proximity and invariant manifolds [D]. Indiana:Purdue University,2008.
[3] Li M T,Zheng J H. Impulsive lunar Halo transfers using the stable manifolds and lunar flybys [J]. Acta Astronautica,2010,66:1481-1492
[4] Crawford I A,Anand M,Cockell C S,et al. Back to the Moon:the scientific rationale for resuming lunar surface exploration [J]. Planetary and Space Science,2012,74:3-14
[5] 刘磊,胡松杰,唐歌实,等. 月球中继通信与导航的研究进展与建议[C]// 中国宇航学会深空探测技术专业委员会第十届学术年会. 太原:中国宇航学会深空探测技术专业委员会,2013.
Liu L,Hu S J,Tang G S,et al. Research progress and suggestions on the communication and navigation of lunar relay[C]// The 10th Conference of Committee of Deep Space Exploration Technology,Chinese Society of Astronautics. Taiyuan:Committee of Deep Space Exploration Technology,Chinese Society of Astronautics,2013.
[6] Lian Y J,Gomez G,Masdemont J J,et al. Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control [J]. Communications in Nonlinear Science and Numerical Simulation,2014,19(10):3792-3807
[7] Folta D C,Pavlak T A,Haapala A F,et al. Earth-Moon libration point orbit station keeping:theroy,modeling,and operations [J]. Acta Astronautic,2014,94(1):421-433
[8] 黄翔宇,黄江川,李骥,等. 基于图像测量数据的目标接近段自主导航方法研究与试验[J]. 中国科学:技术科学,2013,43(7):748-754
Huang X Y,Huang J C,L J,et al. Research and experiment on the target approach segment autonomous navigation method based on image measurement data[J]. Scientia Sinica Technologica,2013,43(7):748-754
[9] 崔平远,高艾,于正湜. 火星着陆自主导航方案研究进展[J]. 深空探测学报,2014,1(1):18-27
Cui P Y,Gao A,Yu Z S. Reserch progress of autonomous navigation scheme for Mars landing[J]. Journal of Deep Space Exploration,2014,1(1):18-27
[10] Qian Y J,Li C Y,Jing W X,et al. Sun-Earth-Moon autonomous orbit determination for quasi-periodic orbit about the translunar libration point and its observability analysis [J]. Aerospace Science and Technology,2013,28:289-296
[11] 黄翔宇,崔平远,崔祜涛. 深空自主导航系统的可观性分析 [J]. 宇航学报,2006,27(3):332-337
Huang X Y,Cui P Y,Cui H T. Observability analysis of deep space autonomous navigation system[J]. Journal of Astronautics,2006,27(3):332-337
[12] Sheikh S I,Pines D J,Ray P S,et al. Spacecraft navigation using X-ray pulsars [J]. Journal of Guidance,Control,and Dynamics,2006,29(1):49-63
[13] 帅平,陈绍龙,吴一帆,等. X射线脉冲星导航原理 [J]. 宇航学报,2007,28(6):1538-1543
Shuai P,Chen S L,Wu Y F,et al. Navigation principles using X-ray pulsars[J]. Journal of Astronautics,2007,28(6):1538-1543
[14] Psiaki M L. Autonomous orbit determination for two spacecraft from relative position measurements [J]. Journal of Guidance,Control,and Dynamics,1999,22(2):305-312
[15] Hill K,Parker J,Born G H,et al. A Lunar L2 navigation,communication,and gravity mission [C]// AIAA/AAS Astrodynamics Specialist Conference. Keystone,CO:AIAA,2006.
[16] Hill K,Born G H. Autonomous interplanetary orbit determination using satellite-to-satellite tracking [J]. Journal of Guidance,Control,and Dynamics,2007,30(3):679-686
[17] Hill K,Born G H. Autonomous orbit determination from lunar Halo orbits using crosslink range [J]. Journal of Spacecraft and Rockets,2008,45(3):548-553
[18] Leonard J M,Jones B A,Villalba E J,et al. Absolute orbit determination and gravity field recovery for 433 Eros using satellite-to-satellite tracking [C]// AIAA/AAS Astrodynamics Specialist Conference. Minneapolis,Minnesota:AIAA,2012.
[19] 高有涛,徐波,熊欢欢. 一种提高导航卫星星座自主定轨精度的方法研究 [J]. 宇航学报,2014,35(10):1165-1175
Gao Y T,Xu B,Xiong H H. A method for improving accuracy of autonomous orbit determination for navigation constellation[J]. Journal of Astronautics,2014,35(10):1165-1175
[20] Richardson D L. Analytic construction of periodic orbits about the collinear points [J]. Celestial Mechanics and Dynamical Astronomy,1980,22:241-253
[21] Howell KC,Pernicka H J. Numerical determination of Lissajous trajectories in the restricted three-body problem [J]. Celestial Mechanics and Dynamical Astronomy,1998,41(1),107-124
[22] Jorba á. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps [J]. Nonlinearity,2001,14(5):943-976
PDF(8488 KB)

Accesses

Citations

Detail

Sections
Recommended

/