An Integrated Evaluation of Planetary Safe Landing Site

CUI Pingyuan1,2, GE Dantong1,2

PDF(11937 KB)
PDF(11937 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (4) : 363-369. DOI: 10.15982/j.issn.2095-7777.2016.04.008

An Integrated Evaluation of Planetary Safe Landing Site

  • CUI Pingyuan1,2, GE Dantong1,2
Author information +
History +

Abstract

With the development of precise landing technology,the terrain condition of the area that the vehicle can reach will be more and more complex. To ensure landing safety,the vehicle needs to assess the landing area topography in the field of view based on the sensor information and picks out a place suitable for landing. In order to solve this problem,the paper proposes a planetary landing site selection method and designs a referential selection index. The safe landing site is chosen according to the evaluation result of terrain condition and fuel consumption. MATLAB simulation proves the effectiveness of the method in both rapid selection process and traversal selection process,which improves mission success probability and landing safety.

Keywords

planetary topography;fuel consumption;landing site selection;safe landing;evaluation method

Cite this article

Download citation ▾
CUI Pingyuan, GE Dantong. An Integrated Evaluation of Planetary Safe Landing Site. Journal of Deep Space Exploration, 2016, 3(4): 363‒369 https://doi.org/10.15982/j.issn.2095-7777.2016.04.008

References

[1] Wolf A A,Acikmese B,Cheng Y,et al. Toward improved landing precision on Mars[C]//IEEE Aerospace Conference.[S.l.]:IEEE,2011:1-8.
[2] Johnson A E,Klumpp A R,Collier J B,et al. Lidar-based hazard avoidance for safe landing on Mars[J]. Journal of Guidance Control & Dynamics,2002,25(6):1091-1099.
[3] Huertas A,Johnson A E,Werner R A,et al. Performance evaluation of hazard detection and avoidance algorithms for safe Lunar landings[C]//IEEE Aerospace Conference.[S.l.]:IEEE,2010:1-20.
[4] Wong E C,Singh G,Masciarelli J P. Autonomous guidance and control design for hazard avoidance and safe landing on Mars[J]. Journal of Spacecraft & Rockets,2006,43(2):378-384.
[5] Prakash R,Burkhart P D,Chen A,et al. Mars science laboratory entry,descent,and landing system overview[C]//Aerospace Conference. IEEE.[S.l.]:IEEE,2008:1-18.
[6] Steinfeldt B A,Grant M J,Matz D A,et al. Guidance,navigation,and control system performance trades for Mars pinpoint landing[J]. Journal of Spacecraft & Rockets,2010,47(1):188-198.
[7] 董捷,王闯,赵洋. 基于工程约束的火星着陆区选择[J]. 深空探测学报,2016,3(2):134-139. Dong J,Wang C,Zhao Y. Selection of the martian landing site based on the engineering constraints[J]. Journal of Deep Space Exploration,2016,3(2):134-139.
[8] Grant J A,Golombek M P,Grotzinger J P,et al. The science process for selecting the landing site for the 2011 Mars Science Laboratory[J]. Planetary & Space Science,2011,59(11):1114-1127.
[9] 吴伟仁,于登云. "嫦娥3号"月球软着陆工程中的关键技术[J]. 深空探测学报,2014,1(2):105-109. Wu W R,Yu D Y. Key technologies in the Chang'e-3 soft-landing project[J]. Journal of Deep Space Exploration,2014,1(2):105-109.
[10] 郭延宁,马广富,曾添一,等. 基于燃料最优解的火星精确着陆制导策略研究[J]. 深空探测学报,2015,2(1):61-68. Guo Y N,Ma G F,Zeng T Y,et al. Mars precision landing guidance strategy based on fuel optimal solutions[J]. Journal of Deep Space Exploration,2015,2(1):61-68.
[11] Cheng Y,Goguen J,Johnson A,et al. The Mars exploration rovers descent image motion estimation system[J]. Intelligent Systems IEEE,2004,19(3):13-21.
PDF(11937 KB)

Accesses

Citations

Detail

Sections
Recommended

/