On-orbit Calibration Approach for Optical Navigation Sensor in Deep Space Exploration

CHENG Yufeng,RUN Yi,WANG Mi

PDF(4250 KB)
PDF(4250 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (3) : 228-236. DOI: 10.15982/j.issn.2095-7777.2016.03.006

On-orbit Calibration Approach for Optical Navigation Sensor in Deep Space Exploration

  • CHENG Yufeng,RUN Yi,WANG Mi
Author information +
History +

Abstract

Optical navigation sensor is a core instrument in optical autonomous navigation, the accuracy of the direction of light of the navigantion target it acquired will affect the accuracy of autonomous navigation directly. In this paper, a stepwise onorbit geometric calibration approach for optical navigation sensor is designed. Firstly, the external calibration parameters are solved. Then, the internal calibration parameters are sovled in the general camera coordinate system determined by external calibration. Because the computation source and ability is limited in the satellite, in order to using more star images to achieve estimation of calibration parameters with high accuracy, a line-by-line orthogonalization method based on least square is adopted in calibration parameter estimation. The experiments demonstrates that the on-orbit calibration approach proposed in this paper can improve the pointing accuracy of optical navigation sensor, and make it meet the requirements of optical autonomous navigation.

Keywords

optical navigation sensor / geometric calibration / line-by-line orthogonalization method / least square

Cite this article

Download citation ▾
CHENG Yufeng, RUN Yi, WANG Mi. On-orbit Calibration Approach for Optical Navigation Sensor in Deep Space Exploration. Journal of Deep Space Exploration, 2016, 3(3): 228‒236 https://doi.org/10.15982/j.issn.2095-7777.2016.03.006

References

[1] Owen Jr V M. Methods of optical navigation[J]. Spaceflight Mechanics,2011,140:1635-1654.
[2] Rebordão J M. Space optical navigation techniques:an overview[C]//8th Ibero American Optics Meeting/11th Latin American Meeting on Optics,Lasers,and Applications.[S. l.]:International Society for Optics and Photonics,2013.
[3] Li S,Lu R K,Zhang L,et al. Image processing algorithms for deep-space autonomous optical navigation[J]. Journal of Navigation,2013,66(04):605-623.
[4] Christian J A,Lightsey G E. Onboard image-processing algorithm for a spacecraft optical navigation sensor system[J]. Journal of Spacecraft and Rockets,2012,49(2):337-352.
[5] Kawaguchi J I,Hashimoto T,Misu T,et al. An autonomous optical guidance and navigation around asteroids[J]. Acta Astronautic,1999,44(5):267-280.
[6] Oberst J,Brinkmann B,Giese B. Geometric calibration of the MICAS CCD sensor on the DS1(Deep Space One)spacecraft:laboratory vs. in-flight data analysis[C]//International Archives of Photogrammetry and Remote Sensing 33.B1;PART 1:221-230(2000).
[7] Samaan M A,Griffith T,Singla P,et al. Autonomous on-orbit calibration of star trackers[C]//Core Technologies for Space Systems Conference(Communication and Navigation Session),2001.
[8] Hong Y Z,Ren G Q,Liu E H,Non-iterative method for camera calibration[J]. Opt. Express,2015,23(18):23992-24003.
[9] Lin P D,Sung C K. Comparing two new camera calibration methods with traditional pinhole calibrations[J]. Opt Express,2007,15(6),3012-3022.
[10] Sun T,Xing F,You Z. Optical system error analysis and calibration method of high-accuracy star trackers[J]. Sensors,2013,13(4):4598-4623.
[11] Wang M,Yang B,Hu F. On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery[J]. Remote Sensing,2014,6(5):4391-4408.
[12] Wei Q,Liang X,Jiancheng F. A new star identification algorithm based on improved hausdorff distance for star sensors[J]. Aerospace and Electronic Systems,IEEE Transactions on,2013,49(3):2101-2109.
[13] Zhang P,Zhao Q,Liu J,et al. A brightness-referenced star identification algorithm for aps star trackers[J]. Sensors,2014,14(10):18498-18514.
[14] Zhou F,Zhao J,Ye T,et al. Fast star centroid extraction algorithm with sub-pixel accuracy based on FPGA[J]. Journal of Real-Time Image Processing,2014(1):1-10.
[15] Luo L,Xu L,Zhang H. Improved centroid extraction algorithm for autonomous star sensor[J]. Image Processing,IET. 2015,9(10):901-907.
[16] HEASARC.TYCHO2[EB/OL].[2015-05-26] http://heasarc.nasa.gov/W3Browse/all/tycho2.html.
PDF(4250 KB)

Accesses

Citations

Detail

Sections
Recommended

/