Typical Cases Analysis and Prospects for Extraterrestrial Subsurface Boring Exploration

JIANG Shengyuan,PIAO Songjie,ZHANG Weiwei,SHEN Yi,HOU Xuyan,QUAN Qiquan,DENG Zongquan

PDF(8216 KB)
PDF(8216 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (1) : 68-76. DOI: 10.15982/j.issn.2095-7777.2016.01.011
Article

Typical Cases Analysis and Prospects for Extraterrestrial Subsurface Boring Exploration

  • JIANG Shengyuan,PIAO Songjie,ZHANG Weiwei,SHEN Yi,HOU Xuyan,QUAN Qiquan,DENG Zongquan
Author information +
History +

Abstract

For the mission of extraterrestrial subsurface boring exploration, the basic principles, implementation schemes and typical cases of the scientific targets investigations such as heat flow and mechanical properties of the regolith profile were studied and analyzed. The significance of the exploration was clarified, therefore the expanding scheme for the regolith sampling of China's 3rd lunar exploration mission and research plan in advance of extraterrestrial subsurface boring exploration were further proposed. Besides, the basic principles and application prospects were analyzed for the creepy-boring scheme and the impact type penetrating scheme.

Keywords

extraterrestrial body / regolith profile / subsurface boring exploration / scientific targets / heat flow / regolith mechanical properties

Cite this article

Download citation ▾
JIANG Shengyuan, PIAO Songjie, ZHANG Weiwei, SHEN Yi, HOU Xuyan, QUAN Qiquan, DENG Zongquan. Typical Cases Analysis and Prospects for Extraterrestrial Subsurface Boring Exploration. Journal of Deep Space Exploration, 2016, 3(1): 68‒76 https://doi.org/10.15982/j.issn.2095-7777.2016.01.011

References

[1] Surkov Y A, Kremnev R S. Mars-96 mission: Mars exploration with the use of penetrators[J]. Planetary and Space Science, 1998, 46(11): 1689-1696.
[2] Shiraishi H, Tanaka S, Fujimura A, et al. The present status of the Japanese penetrator mission: LUNAR-A[J]. Advances in Space Research, 2008, 42(2): 386-393.
[3] Zacny K, Nagihara S, Hedlund M, et al. Pneumatic and percussive penetration approaches for heat flow probe emplacement on robotic lunar missions[J]. Earth, Moon, and Planets, 2013, 111(1-2): 47-77.
[4] Yamada R, Yamada I, Shiraishi H, et al. Capability of the penetrator seismometer system for lunar seismic event observation[J]. Planetary and Space Science, 2009, 57(7): 751-763.
[5] Ball A J, Gadomski S, Banaszkiewicz M, et al. An instrument for in situ comet nucleus surface density profile measurement by gamma ray attenuation[J]. Planetary and Space Science, 2001, 49(9): 961-976.
[6] Kömle N I, Hütter E S, Macher W, et al. In situ methods for measuring thermal properties and heat flux on planetary bodies[J]. Planetary and space science, 2011, 59(8): 639-660.
[7] Langseth Jr M G, Clark Jr S P, Chute Jr J L, et al. The Apollo 15 lunar heat-flow measurement[J]. The Moon, 1972, 4(3-4): 390-410.
[8] Hagermann A. Planetary heat flow measurements[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2005, 363(1837): 2777-2791.
[9] Zent A P, Hecht M H, Cobos D R, et al. Thermal and electrical conductivity probe (TECP) for Phoenix[J]. Journal of Geophysical Research: Planets (1991-2012), 2009, 114(E3).
[10] Spohn T, Seiferlin K, Hagermann A, et al. MUPUS-A thermal and mechanical properties probe for the Rosetta lander Philae[J]. Space Science Reviews, 2007, 128(1-4): 339-362.
[11] Kömle N I, Kaufmann E, Kargl G, et al. Development of thermal sensors and drilling systems for lunar and planetary regoliths[J]. Advances in Space Research, 2008, 42(2): 363-368.
[12] Heiken G, Vaniman D, French B M. Lunar sourcebook: a user's guide to the moon[M]. England: Cambridge University Press, 1991.
[13] Mitchell J K, Houston W N, Carrier W D. Apollo soil mechanics experiment S-200[R]. Berkeley:NASA,1974.
[14] Allen W A, Mayfield E B, Morrison H L. Dynamics of a projectile penetrating sand[J]. Journal of Applied Physics, 1957, 28(3): 370-376.
[15] Seweryn K, Skocki K, Banaszkiewicz M, et al. Determining the geotechnical properties of planetary regolith using low velocity penetrometers[J]. Planetary & Space Science, 2014, 99(1):70-83.
[16] Kargl G, Macher W, Kömle N I, et al. Accelerometry measurements using the Rosetta lander's anchoring harpoon: experimental set-up, data reduction and signal analysis[J]. Planetary and Space Science, 2001, 49(5): 425-435.
[17] Kömle N I, Ball A J, Kargl G, et al. Using the anchoring device of a comet lander to determine surface mechanical properties[J]. Planetary and Space Science, 1997, 45(12): 1515-1538.
PDF(8216 KB)

Accesses

Citations

Detail

Sections
Recommended

/