Research on the Technology of Slowing Down the Rotation of an Asteroid with a Tethered Solar Sail

Wu Jingyun,Gao Youtao

PDF(760 KB)
PDF(760 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (1) : 47-50. DOI: 10.15982/j.issn.2095-7777.2016.01.007

Research on the Technology of Slowing Down the Rotation of an Asteroid with a Tethered Solar Sail

  • Wu Jingyun,Gao Youtao
Author information +
History +

Abstract

A method of slowing down the rotation of an asteroid with a tethered solar sail is proposed in this paper. With no change of the length of the tether, the solar radiation pressure suffered by the solar sail will keep it on the synchronous orbit of the asteroid. It can prevent the tether from twining around the asteroid caused by the rotation of the asteroid. By controlling the solar sail, the tether can be tightened. The force in the tether will continually provide a torque opposite to the rotation direction of the asteroid. Then the rotation rate of the asteroid can decrease. The results show that when the area of the solar sail is 106 m2, the rotation of the asteroid can be eliminated after about 86 days. It verifies the effectiveness of this method.

Keywords

solar sail / tethered system / asteroid / synchronous orbit

Cite this article

Download citation ▾
Wu Jingyun, Gao Youtao. Research on the Technology of Slowing Down the Rotation of an Asteroid with a Tethered Solar Sail. Journal of Deep Space Exploration, 2016, 3(1): 47‒50 https://doi.org/10.15982/j.issn.2095-7777.2016.01.007

References

[1] 李爽, 崔平远. 着陆小行星的滑模变结构控制[J]. 宇航学报, 2005, 26(6): 808-812.Li S, Cui P Y. Variable structure with sliding-mode control for landing on asteroids[J]. Journal of Astronautics, 2005, 26(6): 808-812.
[2] 王开强, 李志海, 张柏楠. 载人小行星探测的飞行模式[J]. 载人航天, 2014, 20(1): 89-94.Wang K Q, Li Z H, Zhang B N. Mission mode of the human asteroid exploration[J]. Manned Spaceflight, 2014, 20(1): 89-94.
[3] 赵建文, 李人杰, 王晓慧, 等. 一种载人小行星探测目标星初选方法[J]. 载人航天, 2014, 20(6): 574-579.Zhao J R, Li R J, Wang X H, et al. A primary target selection method for human asteroid exploration[J]. Manned Spaceflight, 2014, 20(6): 574-579.
[4] 徐伟彪, 赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展, 2005, 20(11): 1183-1190.Xu W B, Zhao H B. Deep space exploration of asteroids: the science perspectives[J]. Advances in Earth Science, 2005, 20(11): 1183-1190.
[5] 于洋, 宝音贺西. 小天体附近的轨道动力学研究综述[J]. 深空探测学报, 2014, 1(2): 93-104.Yu Y, Baoyin H X. Review of orbital dynamics in the vicinity of solar system small celestial bodies[J]. Journal of Deep Space Exploration, 2014, 1(2): 93-104.
[6] Hu W D. Orbital motion in uniformly rotating second degree and order gravity fields[D]. Michigan: University of Michigan Ph.D. thesis, 2002: 13-17.
[7] 张振江, 崔祜涛, 任高峰. 不规则形状小行星引力环境建模及球谐系数求取方法[J]. 航天器环境工程, 2010, 27(3): 383-388.Zhang Z J, Cui H T, Ren G F. Modeling for the gravitation potential environment of an irregular-shaped asteroid and the spherical harmonic coefficient estimation[J]. Spacecraft Environment Engineering, 2010, 27(3):383-388.
[8] Hu W D, Scheeres D J. Numerical determination of stability regions for orbital motion in uniformily rotating second degree and order gravity fields[J]. Planetary and Space Science, 2004(52): 685-692.
[9] Hu W D, Scheeres D J. Spacecraft orbital motion around asteroids[J]. Journal of Astronautics. 2006, 27(5): 961-964.
[10] Zhang Z J, Cui H T, Cui P Y. Determining of a novel periodic orbits around equilibrium points of asteroids[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(1):44-50.
[11] 倪彦硕, 宝音贺西, 李俊峰. 考虑太阳摄动的小行星附近轨道动力学[J]. 深空探测学报, 2014, 1(1): 67-74.Ni Y S, Baoyin H X, Li J F. Orbit dynamics in the vicinity of asteroids with solar perturbation[J]. Journal of Deep Space Exploration, 2014, 1(1): 67-74.
PDF(760 KB)

Accesses

Citations

Detail

Sections
Recommended

/