Generalized Flyby Trajectories over Irregular-Shaped Small Bodies

ZENG Xiangyuan1, LI Junfeng2, LIU Xiangdong1

PDF(1566 KB)
PDF(1566 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (1) : 29-33. DOI: 10.15982/j.issn.2095-7777.2016.01.004

Generalized Flyby Trajectories over Irregular-Shaped Small Bodies

  • ZENG Xiangyuan1, LI Junfeng2, LIU Xiangdong1
Author information +
History +

Abstract

This paper focuses on the elongated small body whose exterior potential is approximated by the rotating mass dipole. The study aims to discuss the characteristics of generalized flyby trajectories over these irregular-shaped small bodies. Different from the traditional gravity assist or swing-by trajectories, a test particle along the generalized flyby trajectory can be ejected into a hyperbolic trajectory from an elliptical orbit in a short duration or vice versa. The orbital energy variation is adopted to illustrate the dynamical behavior and obtain numerical simulations. Particularly, the name and dynamical problem of such a trajectory given in this paper are still open to further readers.

Keywords

irregular-shaped small body / rotating mass dipole / generalized flyby trajectory

Cite this article

Download citation ▾
ZENG Xiangyuan, LI Junfeng, LIU Xiangdong. Generalized Flyby Trajectories over Irregular-Shaped Small Bodies. Journal of Deep Space Exploration, 2016, 3(1): 29‒33 https://doi.org/10.15982/j.issn.2095-7777.2016.01.004

References

[1] Sims J A, Longushi J M, Staugler A J. V∞ leveraging for interplanetary missions: multiple-revolution orbit techniques[J]. Journal of Guidance, Control and Dynamics, 1997, 20(3): 409-415.
[2] 李俊峰, 宝音贺西, 蒋方华. 深空探测动力学与控制[M]. 北京: 清华大学出版社, 2014. Li J F, Baoyin H X, Jiang F H. Dynamics and control of interplanetary flight[M]. Beijing: Tsinghua University Press, 2014.
[3] Zeng X Y, Alfriend K T, Li J F, et al. Optimal solar sail trajectory analysis for interstellar missions[J]. Journal of the Astronautical Sciences, 2012, 59(3): 502-516.
[4] Scheeres D J, Ostro S J, Hudson R S, et al. Orbits close to asteroid 4769 Castalia[J]. Icarus, 1996(121): 67-87.
[5] Yu Y, Baoyin H X. Resonant orbits in the vicinity of asteroid 216 Kleopatra. astrophys[J]. Space Sci. , 2013, 343(1): 75-82.
[6] Wang X Y, Gong S P, Li J F. A method for classifying orbits near asteroids[J]. Acta Mechanica Sinica, 2014, 30(3): 316-325.
[7] Tricarico P, Sykes M V. The dynamical environment of Dawn at Vesta[J]. Planetary and Space Science, 2010(58): 12-38.
[8] 崔平远, 乔栋. 小天体附近轨道动力学与控制研究现状与展望[J]. 力学进展, 2013, 43 (5): 526-539. Cui P Y, Qiao D. Research progress and prospect of orbital dynamics and control near small bodies. [J]Advances in Mechanices, 2013, 43(5): 526-539.
[9] Chermnykh S V. On the stability of libration points in a certain gravitational field[J]. Vest. Leningrad Univ., 1987, 2(8): 73-77.
[10] Kokoriev A A, Kirpichnikov S N. On the stability of stationary triangular Lagrangian motions in the system of two attracting bodies: an axisymmetrical, peer-like and spherically symmetric[J]. Vest. Leningrad Univ., 1988, 1(1): 75-84.
[11] Kirpichnikov S N, Kokoriev A A. On the stability of stationary collinear Lagrangian motions in the system of two attracting bodies: an axisymmetrical, peer-like and spherically symmetric[J]. Vest. Leningrad Univ., 1988, 3(1): 72-84.
[12] Goździewski K, Maciejewski A J. Nonlinear stability of the Lagrangian libration points in the Chermnykh problem[J]. Cele. Mech. Dyn. Astron., 1998, 70(1): 41-58.
[13] Zeng X Y, Jiang F H, Li J F, et al. Study on the connection between the rotating mass dipole and natural elongated bodies[J]. Astrophys. Space Sci., 2015, 356(1): 29-42.
[14] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京: 北京航空航天大学出版社, 1998. Zhang R W. Dynamics and control of satellite orbit and attitude[M]. Beijing: Beihang University Press, 1998.
PDF(1566 KB)

Accesses

Citations

Detail

Sections
Recommended

/