Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist

HE Shengmao,PENG Chao,GAO Yang

PDF(3221 KB)
PDF(3221 KB)
Journal of Deep Space Exploration ›› 2016, Vol. 3 ›› Issue (1) : 18-28. DOI: 10.15982/j.issn.2095-7777.2016.01.003

Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist

  • HE Shengmao,PENG Chao,GAO Yang
Author information +
History +

Abstract

There are several flight options for the Chang'E-2 spacecraft after its remaining at the Sun-Earth L2 point, for example, impacting the Moon or recapture into lunar orbit, returning to Earth orbit or atmospheric reentry, heading for halo orbits of the Earth-Moon L1 or L2 or the Sun-Earth L1 point, as well as flying by near-Earth asteroids in interplanetary space (Finally, Chang'E-2 successfully implemented a close flyby of Toutatis, a potentially hazardous near-Earth asteroid, on Dec.13, 2012). The analyses of these flight options require designing preliminary transfer trajectories with total velocity impulses no more than 100 m/s in four-body dynamics, in which the motion of the spacecraft is influenced by the gravities of the Sun, Earth, and Moon. In this study, we shall present low-energy Toutatis flyby trajectories from a Sun-Earth L2 quasi-periodic orbit, specifically, via a single lunar gravity assist that is intentionally utilized for exploring potential benefits, compared with the direct transfer manner that is adopted in the practical mission. Compared with the direct transfer trajectories to the asteroid, lunar gravity assist is demonstrated to be capable of saving propellant for the Toutatis flyby mission, and the equivalent velocity impulses are 58.46 m/s.

Keywords

Chang'E-2 / Sun-Earth L2 / lunar gravity assist / Toutatis asteroid

Cite this article

Download citation ▾
HE Shengmao, PENG Chao, GAO Yang. Near-Earth Asteroid Flyby Trajectories from the Sun-Earth L2 via Lunar Gravity Assist. Journal of Deep Space Exploration, 2016, 3(1): 18‒28 https://doi.org/10.15982/j.issn.2095-7777.2016.01.003

References

[1] Gao Y, Li H, He S. First-round design of flight scenario for Chang'e-2's extended mission: taking off from lunar orbit[J]. Acta Mechanica Sinica,2012,28(5), 1466-1478.
[2] Gao Y. Near-Earth asteroid flyby trajectories from the Sun-Earth L2 for Chang'e-2's extended flight[J]. Acta Mechanica Sinica. 2013, 29(1), 123-131.
[3] Parker J S, Lo M W. Unstable resonant orbits near Earth and their applications in planetary missions[C]//AIAA/AAS Astrodynamics Specialist Conference. Providence, Rhode Island:AIAA,2004.
[4] Jesick M, Ocampo C. Automated generation of symmetric lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2011,34(1): 98-106.
[5] Gordon D P. Transfers to Earth-Moon L2 halo orbits using lunar proximity and invariant manifolds[D]. Purdue University, 2008.
[6] Wilson R S, Howell K C. Trajectory design in the Sun-Earth-Moon system using lunar gravity assists[J]. Journal of Spacecraft Rockets, 1998,35(2), 191-198.
[7] Farquhar R, Muhonen D, Church L. Trajectories and orbital maneuvers for the ISEE-3/ICE comet mission[J]. Journal of Astronautical Sciences, 1985,33(3), 235-254.
[8] Belbruno E. Capture dynamics and chaotic motions in celestial mechanics with applications to the construction of low energy transfers[M]. Princeton:Princeton University Press, 2004.
[9] Lo M,Ross S D. Low energy interplanetary transfers using invariant manifolds of L1 and L2 and halo orbits[C]// AAS/AIAA Space Flight Mechanics Meeting.Monterey, California:AIAA, 1998.
[10] Koon W S, Lo M W, Marsden J E. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics[J]. Chaos, 2000, 10(2), 427-469.
[11] Gomez G, Koon W S, Lo M W. Invariant manifolds, the spatial three-body problem and space mission design[C]// AAS-01-301, AAS/AIAA Astrodynamics Specialist Conference. Quebec City, Canada:AIAA,2001.
[12] Gomez G, Jorba A, Masdemont J. Study of the transfer from the Earth to a halo orbit around the equilibrium point L1[J]. Celestial Mechanics and Dynamical Astronomy,1993, 56(4), 541-562.
[13] Howell K, Mains D, Barden B. Transfer trajectories from Earth parking orbits to Sun-Earth halo orbits, [C]//AAS/AIAA Space Flight Mechanics Meeting, Advances in the Astronautical Sciences, 87(1),Univelt. San Diego, CA:AIAA,1994:399-422.
[14] Senent J, Ocampo C, Capella A. Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2), 280-290.
[15] Mingotti G, Topputo F, Bernelli-Zazzera F. Combined optimal low-thrust and stable-manifold trajectories to the Earth-Moon halo orbits[J]. New Trends in Astrodynamics and Applications, 2007, 3(886):100-112.
[16] Ozimek M T, Howell K C. Low-thrust transfers in the Earth-Moon system, including applications to libration point orbit[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2), 533-549.
[17] Howell K C, Kakoi K. Transfers between the Earth-Moon and Sun-Earth systems using manifolds and transit orbits[J]. Acta Astronautica, 2006(59):367-380.
[18] JPL DE405 Ephemeris[EB/OL]. [2015-10-05]. ftp://ssd.jpl.nasa.gov/pub/eph/export/usrguide.
[19] SzebehelyV. Theory of orbits: the restricted problem of three bodies[M]. New York:Academic Press, 1967.
[20] NEO Earth close-approaches[EB/OL]. [2015-10-05]. http://neo.jpl.nasa.gov/cgibin/neo ca/.
[21] 叶培建, 黄江川, 张廷新, 等. 嫦娥二号卫星技术成就与中国深空探测展望[J]. 中国科学:技术科学, 2013, 43(05):467-477.Ye P J, Huang J C, Zhang Y X, et al. Technical achievement of Chang'E-2 and prospect of Chinese deep space exploration[J]. Scientia Sinica Technologica, 2013, 43(05):467-477.
[22] 吴伟仁, 崔平远, 乔栋, 等. 嫦娥二号日地拉格朗日L2点探测轨道设计与实施[J]. 科学通报, 2012, 57(21):1987-1991.Wu W R, Cui P Y, Qiao D, et al. Design and performance of exploring trajectory to Sun-Earth L2 point for Chang'E-2 mission[J]. Chinese Science Bulletin, 2012, 57(21):1987-1991.
[23] 乔栋, 黄江川, 崔平远, 等. 嫦娥二号卫星飞越Toutatis小行星转移轨道设计[J]. 中国科学:技术科学, 2013, 43(5):487-492.Qiao D, Huang J C, Cui P Y, et al. Transfer orbit design for Chang'E-2 flyby of asteroid Toutatis[J]. Scientia Sinica Technologica, 2013, 43(5):487-492.
[24] 刘磊, 吴伟仁, 唐歌实, 等. 嫦娥二号后续小行星飞越探测任务设计[J]. 国防科技大学学报, 2014, 36(2):13-17.Liu L, Wu W R, Tang G S, et al. Design of an asteroid flying-by mission for Chang'E-2[J]. Journal of National University of Defense Technology, 2014, 36(2):13-17.
[25] 胡寿村, 季江徽, 赵玉晖, 等. 嫦娥二号飞越小行星试验中图塔蒂斯轨道确定与精度分析[J]. 中国科学:技术科学, 2013, 43(5):506-511.Hu S C, Ji J H, Zhao Y H, et al. Orbit detemination and precision analysis of Toutatis in flying-by experiment for Chang'E-2[J]. Scientia Sinica Technologica, 2013, 43(5):506-511.
[26] 田百义, 周文艳, 刘德成. 嫦娥二号卫星绕日运行轨道分析[J]. 航天器工程, 2015, 24(4):7-11. Tian B Y, Zhou W Y, Liu D C. Analysis of Chang'e-2 heliocentric orbit[J]. Spacecraft Engineering, 2015, 24(4):7-11.
[27] Gao Y. Analysis of the Earth co-orbital motion of Chang'e-2 after asteroid flyby[J]. Chinese Science Bulletin, 2014, 59(17): 2045-2049.
PDF(3221 KB)

Accesses

Citations

Detail

Sections
Recommended

/