Cuproptosis-related gene-based characterization and diagnostic biomarker screening in gliomas

Xi Shen , Jiandong Zhu , Yuhang Gu , Weiwei Zhai , Liang Sun , Jiang Wu , Zhengquan Yu

Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11 : 24

PDF
Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11:24 DOI: 10.20517/2394-4722.2025.61
review-article

Cuproptosis-related gene-based characterization and diagnostic biomarker screening in gliomas

Author information +
History +
PDF

Abstract

Aim: Glioma, the most common primary brain tumor, is known for its poor prognosis, limited treatment success, and high level of aggressiveness. Although cuproptosis-related genes have been linked to outcomes in other cancers, their role in glioma is still not well understood.

Methods: By leveraging the Cancer Genome Atlas (TCGA) and additional databases, we conducted Cox regression and Kaplan-Meier analysis to determine the predictive importance of cuproptosis-related genes in individuals with glioma. By utilizing data from Gene Expression Omnibus (GEO) and other relevant databases, we examined how the expression of cuproptosis-associated genes correlates with immune cell infiltration, immunological checkpoint status, pathological stage, and histological grade. Additionally, we analyzed the connection between gene expression linked to cuproptosis and the prognosis in glioma patients.

Results: Our newly developed cuproptosis-based glioma predictive model demonstrated promising prediction performance. Additionally, we identified glutaminase (GLS) in glioblastoma as a potential novel diagnostic indicator for glioma patients.

Conclusion: GLS holds the potential to provide novel perspectives on cancer management and serve as a valuable diagnostic predictor for glioma patients.

Keywords

Cuproptosis-related gene, diagnostic, glioma, GLS / biomarker

Cite this article

Download citation ▾
Xi Shen, Jiandong Zhu, Yuhang Gu, Weiwei Zhai, Liang Sun, Jiang Wu, Zhengquan Yu. Cuproptosis-related gene-based characterization and diagnostic biomarker screening in gliomas. Journal of Cancer Metastasis and Treatment, 2025, 11: 24 DOI:10.20517/2394-4722.2025.61

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang B,Liu J,He M.Construction and validation of a cuproptosis-related prognostic model for glioblastoma.Front Immunol2023;14:1082974 PMCID:PMC9939522

[2]

Samioti SE,Sarris IE.Effect of fractal-shaped outer boundary of glioblastoma multiforme on drug delivery.Comput Methods Programs Biomed2019;178:191-9

[3]

Polivka J Jr,Holubec L.Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme.Anticancer Res2017;37:21-33

[4]

Lapointe S,Butowski NA.Primary brain tumours in adults.Lancet2018;392:432-46

[5]

Garcia CR,Dolecek TA,Neltner JH.Primary central nervous system tumor treatment and survival in the United States, 2004-2015.J Neurooncol2019;144:179-91 PMCID:PMC10372928

[6]

Zhao YY,Hao Z,Xing ZL.A nomogram for predicting individual prognosis of patients with low-grade glioma.World Neurosurg2019;130:e605-12

[7]

Kiran M,Tang X,Dutta A.A prognostic signature for lower grade gliomas based on expression of long non-coding RNAs.Mol Neurobiol2019;56:4786-98 PMCID:PMC6499716

[8]

Razzak M.Genetics: new molecular classification of gastric adenocarcinoma proposed by The Cancer Genome Atlas.Nat Rev Clin Oncol2014;11:499

[9]

Deng S,Yi G.Overexpression of COX7A2 is associated with a good prognosis in patients with glioma.J Neurooncol2018;136:41-50

[10]

Sonkin D,Teicher BA.Cancer treatments: past, present, and future.Cancer Genet2024;286-287:18-24 PMCID:PMC11338712

[11]

Li SR,Cai L.Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway.Signal Transduct Target Ther2022;7:158 PMCID:PMC9106713

[12]

Tsvetkov P,Petrova B.Copper induces cell death by targeting lipoylated TCA cycle proteins.Science2022;375:1254-61

[13]

Wang W,Huang Y,Sun L.Comprehensive analysis of the potential biological significance of cuproptosis-related gene LIPT2 in pan-cancer prognosis and immunotherapy.Sci Rep2023;13:22910 PMCID:PMC10739704

[14]

Kim BE,Thiele DJ.Mechanisms for copper acquisition, distribution and regulation.Nat Chem Biol2008;4:176-85

[15]

Rae TD,Pufahl RA,O’Halloran TV.Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase.Science1999;284:805-8

[16]

Denoyer D,La Fontaine S.Targeting copper in cancer therapy: ‘copper that cancer’.Metallomics2015;7:1459-76

[17]

Trammell R,Garcia-Bosch I.Copper-promoted functionalization of organic molecules: from biologically relevant Cu/O2 model systems to organometallic transformations.Chem Rev2019;119:2954-3031

[18]

Tang D,Kroemer G.Cuproptosis: a copper-triggered modality of mitochondrial cell death.Cell Res2022;32:417-8 PMCID:PMC9061796

[19]

Wang C.Cuproptosis-related gene subtypes predict prognosis in patients with head and neck squamous cell carcinoma.J Otolaryngol Head Neck Surg2023;52:58 PMCID:PMC10496405

[20]

Shi B,Wang T.The therapeutic and prognostic role of cuproptosis-related genes in triple negative breast cancer.BMC Bioinformatics2023;24:223 PMCID:PMC10234018

[21]

Wang S,Meng X,Zhang Y.Comprehensive bioinformatics analysis to identify a novel cuproptosis-related prognostic signature and its ceRNA regulatory axis and candidate traditional Chinese medicine active ingredients in lung adenocarcinoma.Front Pharmacol2022;13:971867 PMCID:PMC9468865

[22]

Long S,Chen Y,Yao Y.Pan-cancer analysis of cuproptosis regulation patterns and identification of mTOR-target responder in clear cell renal cell carcinoma.Biol Direct2022;17:28 PMCID:PMC9548146

[23]

Liu JY,Li Z,Liang F.The role of cuproptosis-related gene in the classification and prognosis of melanoma.Front Immunol2022;13:986214 PMCID:PMC9632664

[24]

Zhou Z,Liu D,Tang M.Prognostic and immune correlation evaluation of a novel cuproptosis-related genes signature in hepatocellular carcinoma.Front Pharmacol2022;13:1074123 PMCID:PMC9795230

[25]

Liu H.Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set.Front Oncol2022;12:952290 PMCID:PMC9582932

[26]

Liu H.Pan-cancer profiles of the cuproptosis gene set.Am J Cancer Res2022;12:4074-81 PMCID:PMC9442004

[27]

Gene expression omnibus.Available from: https://www.ncbi.nlm.nih.gov/geo/ [Last accessed on 8 Aug 2025]

[28]

Frankish A,Ferreira AM.GENCODE reference annotation for the human and mouse genomes.Nucleic Acids Res2019;47:D766-73 PMCID:PMC6323946

[29]

Goldman MJ,Hastie M.Visualizing and interpreting cancer genomics data via the Xena platform.Nat Biotechnol2020;38:675-8 PMCID:PMC7386072

[30]

Cibulskis K,Carter SL.Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.Nat Biotechnol2013;31:213-9 PMCID:PMC3833702

[31]

Mayakonda A,Assenov Y,Koeffler HP.Maftools: efficient and comprehensive analysis of somatic variants in cancer.Genome Res2018;28:1747-56 PMCID:PMC6211645

[32]

Mermel CH,Hill B,Beroukhim R.GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers.Genome Biol2011;12:R41 PMCID:PMC3218867

[33]

Gravendeel LA,Gevaert O.Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology.Cancer Res2009;69:9065-72

[34]

Kruthika BS,Arivazhagan A.Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma.J Neurooncol2019;141:315-25

[35]

Franz M,Lopes C.GeneMANIA update 2018.Nucleic Acids Res2018;46:W60-4 PMCID:PMC6030815

[36]

Yu G,Han Y.clusterProfiler: an R package for comparing biological themes among gene clusters.OMICS2012;16:284-7 PMCID:PMC3339379

[37]

Zhang R,Dong X.Independent validation of early-stage non-small cell lung cancer prognostic scores incorporating epigenetic and transcriptional biomarkers with gene-gene interactions and main effects.Chest2020;158:808-19 PMCID:PMC7417380

[38]

Saldana DF.SIS: an R package for sure independence screening in ultrahigh-dimensional statistical models.J Stat Soft2018;83:1-25

[39]

Heagerty PJ.Survival model predictive accuracy and ROC curves.Biometrics2005;61:92-105

[40]

Li T,Wang B.TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells.Cancer Res2017;77:e108-10

[41]

Wang Q,Tu H.Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients.J Immunother Cancer2019;7:334 PMCID:PMC6884764

[42]

Langfelder P.WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics2008;9:559 PMCID:PMC2631488

[43]

Gao J,Dogrusoz U.Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci Signal2013;6:pl1 PMCID:PMC4160307

[44]

Cerami E,Dogrusoz U.The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer Discov2012;2:401-4

[45]

Lánczky A,Bottai G.miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients.Breast Cancer Res Treat2016;160:439-46

[46]

Weller M,Chang SM.Glioma.Nat Rev Dis Primers2024;10:33

[47]

Cluntun AA,Cerione RA.Glutamine metabolism in cancer: understanding the heterogeneity.Trends Cancer2017;3:169-80 PMCID:PMC5383348

[48]

Restall IJ,Richards LM,Luchman HA.Brain tumor stem cell dependence on glutaminase reveals a metabolic vulnerability through the amino acid deprivation response pathway.Cancer Res2020;80:5478-90

[49]

Huang Q,Dong Y.SNAP25 inhibits glioma progression by regulating synapse plasticity via GLS-mediated glutaminolysis.Front Oncol2021;11:698835 PMCID:PMC8416623

[50]

Rosati A,Todeschini A.Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme.Neuro Oncol2013;15:618-25

[51]

Li X,Jiang C.Intelligent delivery systems in tumor metabolism regulation: exploring the path ahead.Adv Mater2024;36:e2309582

[52]

Zhao T,Li Y.Brucella abortus modulates macrophage polarization and inflammatory response by targeting glutaminases through the NF-κB signaling pathway.Front Immunol2023;14:1180837 PMCID:PMC10266586

[53]

Köhler N,Kesselring R.The role of immune checkpoint molecules for relapse after allogeneic hematopoietic cell transplantation.Front Immunol2021;12:634435 PMCID:PMC7973115

[54]

Lee YH,Zheng P.Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function.Cell Res2017;27:1034-45 PMCID:PMC5539354

[55]

Picarda E,Zang X.Molecular pathways: targeting B7-H3 (CD276) for HUMAN CANCER IMMUNOTHerapy.Clin Cancer Res2016;22:3425-31 PMCID:PMC4947428

[56]

Dröge W,Betzler M.Elevated plasma glutamate levels in colorectal carcinoma patients and in patients with acquired immunodeficiency syndrome (AIDS).Immunobiology1987;174:473-9

[57]

Nabe S,Suzuki J.Reinforce the antitumor activity of CD8+ T cells via glutamine restriction.Cancer Sci2018;109:3737-50

[58]

Liu H,Karsidag M,Wang P.Technical and biological biases in bulk transcriptomic data mining for cancer research.J Cancer2025;16:34-43

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/