Pathogenesis of osteosarcoma and intervention with traditional Chinese medicine

Mengxue Liang , Xuewen Ni , Zijie Dong , Qingyu Xue , Zhehao Li , Ping Xia , Feifei Pu

Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11 : 22

PDF
Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11:22 DOI: 10.20517/2394-4722.2025.31
review-article

Pathogenesis of osteosarcoma and intervention with traditional Chinese medicine

Author information +
History +
PDF

Abstract

Osteosarcoma (OS) is a malignant bone tumor characterized by rapid progression and a high propensity to metastasis. Elucidating the mechanisms underlying cell proliferation and metastasis is crucial to improving prognosis. Recent advances in OS research span multiple dimensions, such as genetic mutations, epigenetic alterations, and aberrant signaling pathways. Additionally, the roles of the tumor microenvironment and cancer stem cells are increasingly recognized. Furthermore, traditional Chinese medicine (TCM) has gained significant attention due to its ability to regulate OS through multiple targets and pathways. Specifically, TCM formulations combat tumor progression via holistic mechanisms. These include reinforcing healthy Qi, eliminating pathogenic factors, promoting blood circulation, resolving stasis, and clearing heat toxicity. The monomeric components of TCM exert antitumor effects by suppressing tumor growth, inducing apoptosis, modulating the immune microenvironment, and reversing drug resistance. Acupuncture has shown efficacy in alleviating chemotherapy-induced side effects and improving drug sensitivity in tumor cells. This review summarizes the mechanisms of OS development and the progress in TCM-based interventions, emphasizing the need for further integration of modern scientific technologies to elucidate the specific mechanisms of TCM in targeting OS and advance its clinical application in OS therapy.

Keywords

OS / pathogenesis / genes / signaling pathways / tumor microenvironment / traditional Chinese medicine / acupuncture / acupoints

Cite this article

Download citation ▾
Mengxue Liang, Xuewen Ni, Zijie Dong, Qingyu Xue, Zhehao Li, Ping Xia, Feifei Pu. Pathogenesis of osteosarcoma and intervention with traditional Chinese medicine. Journal of Cancer Metastasis and Treatment, 2025, 11: 22 DOI:10.20517/2394-4722.2025.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Isakoff MS,Meltzer P.Osteosarcoma: current treatment and a collaborative pathway to success.J Clin Oncol2015;33:3029-35

[2]

Gianferante DM,Savage SA.Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy.Nat Rev Endocrinol2017;13:480-91

[3]

Valery PC,Bray F.Bone cancer incidence by morphological subtype: a global assessment.Cancer Causes Control2015;26:1127-39

[4]

Ritter J.Osteosarcoma.Ann Oncol2010;21 Suppl 7:vii320-5

[5]

Chang JL,Li YM.Chinese herbal medicine for osteosarcoma in the mouse: a systematic review and meta-analysis.Chin J Integr Med2019;25:370-7

[6]

Tsuchiya T,Hinohara S,Nobori T.Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma.Cancer Genet Cytogenet2000;120:91-8

[7]

Gonzalez KD,Buzin CH.Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations.J Clin Oncol2009;27:1250-6

[8]

Seidinger AL,Paschoal Fortes F.Association of the highly prevalent TP53 R337H mutation with pediatric choroid plexus carcinoma and osteosarcoma in southeast Brazil.Cancer2011;117:2228-35

[9]

Shimizu T,Takeshima H.Depletion of R270C mutant p53 in osteosarcoma attenuates cell growth but does not prevent invasion and metastasis in vivo.Cells2022;11:3614 PMCID:PMC9688353

[10]

Mirabello L,Mai PL.Germline TP53 variants and susceptibility to osteosarcoma.J Natl Cancer Inst2015;107:djv101 PMCID:PMC4651039

[11]

Chen X,Pappo A.StJude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.Cell Rep2014;7:104-12

[12]

Liu S,Du W,Zhang W.LAMP3 plays an oncogenic role in osteosarcoma cells partially by inhibiting TP53.Cell Mol Biol Lett2018;23:33 PMCID:PMC6042264

[13]

Chen YQ,Zhou B,Feng HJ.HOXA5 overexpression promotes osteosarcoma cell apoptosis through the p53 and p38α MAPK pathway.Gene2019;689:18-23

[14]

Samsa WE,Bashur LA.The crucial p53-dependent oncogenic role of JAB1 in osteosarcoma in vivo.Oncogene2020;39:4581-91 PMCID:PMC7274902

[15]

Li KW,Wei X,Li ZH.Mechanism of miR-122-5p regulating the activation of PI3K-Akt-mTOR signaling pathway on the cell proliferation and apoptosis of osteosarcoma cells through targeting TP53 gene.Eur Rev Med Pharmacol Sci2020;24:12655-66

[16]

Wan J,Zhang C.miR181bp53 negative feedback axis regulates osteosarcoma cell proliferation and invasion.Int J Mol Med2020;45:1803-13 PMCID:PMC7169658

[17]

Otani S,Ueno T.Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma.Oncogene2022;41:683-91

[18]

Zoumpoulidou G,Mancusi C.Therapeutic vulnerability to PARP1,2 inhibition in RB1-mutant osteosarcoma.Nat Commun2021;12:7064

[19]

van Harn T,van Vugt M.Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling.Genes Dev2010;24:1377-88 PMCID:PMC2895197

[20]

Ballatori SE.Osteosarcoma: prognosis plateau warrants retinoblastoma pathway targeted therapy.Signal Transduct Target Ther2016;1:16001 PMCID:PMC5657420

[21]

Li Y,Liu Y.Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling.MedComm2022;3:e131

[22]

Li Y,Yang S.Verteporfin inhibits the progression of spontaneous osteosarcoma caused by Trp53 and Rb1 deficiency in ctsk-expressing cells via impeding hippo pathway.Cells2022;11:1361 PMCID:PMC9031376

[23]

Ren W.Prognostic implications of RB1 tumour suppressor gene alterations in the clinical outcome of human osteosarcoma: a meta-analysis.Eur J Cancer Care2017;26:e12401

[24]

Mohseny AB,van der Velden PA.Small deletions but not methylation underlie CDKN2A/p16 loss of expression in conventional osteosarcoma.Genes Chromosomes Cancer2010;49:1095-103

[25]

Letko A,Norton EM.Genome-wide analyses for osteosarcoma in leonberger dogs reveal the CDKN2A/B gene locus as a major risk locus.Genes2021;12:1964 PMCID:PMC8700858

[26]

Jiang J,Wei J.Artificial intelligence reveals dysregulation of osteosarcoma and cuproptosis-related biomarkers, PDHA1, CDKN2A and neutrophils.Sci Rep2023;13:4927 PMCID:PMC10040405

[27]

Shaikh AB,Li M.Present advances and future perspectives of molecular targeted therapy for osteosarcoma.Int J Mol Sci2016;17:506 PMCID:PMC4848962

[28]

Dang CV.MYC on the path to cancer.Cell2012;149:22-35 PMCID:PMC3345192

[29]

Walz S,Morton J.Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles.Nature2014;511:483-7 PMCID:PMC6879323

[30]

Yu W,Lin F,Shen Z.DGKZ acts as a potential oncogene in osteosarcoma proliferation through its possible interaction with ERK1/2 and MYC pathway.Front Oncol2018;8:655 PMCID:PMC6328465

[31]

Tang Y.lncRNA HOTTIP facilitates osteosarcoma cell migration, invasion and epithelial-mesenchymal transition by forming a positive feedback loop with c-Myc.Oncol Lett2019;18:1649-56 PMCID:PMC6607149

[32]

Gao J,Yang F.miR193b exhibits mutual interaction with MYC, and suppresses growth and metastasis of osteosarcoma.Oncol Rep2020;44:139-55 PMCID:PMC7254955

[33]

Nirala BK,Kurenbekova L.MYC regulates CSF1 expression via microRNA 17/20a to modulate tumor-associated macrophages in osteosarcoma.JCI Insight2023;8:e164947 PMCID:PMC10371352

[34]

Ueno T,Date Y.Myc upregulates Ggct, γ-glutamylcyclotransferase to promote development of p53-deficient osteosarcoma.Cancer Sci2024;115:2961-71

[35]

Wen J,Zhang Y.MACC1 Contributes to the development of osteosarcoma through regulation of the HGF/c-Met pathway and microtubule stability.Front Cell Dev Biol2020;8:825 PMCID:PMC7793648

[36]

Kawano M,Itonaga I,Kubota Y.The anti-oncogenic effect of 17-DMAG via the inactivation of HSP90 and MET pathway in osteosarcoma cells.Oncol Res2023;31:631-43 PMCID:PMC10398415

[37]

Patanè S,Coltella N.MET overexpression turns human primary osteoblasts into osteosarcomas.Cancer Res2006;66:4750-7

[38]

Lu KH,Hsieh YH.Lipocalin-2 inhibits osteosarcoma cell metastasis by suppressing MET expression via the MEK-ERK pathway.Cancers2021;13:3181

[39]

Jia T,Wang Z.Anticancer effect of crizotinib on osteosarcoma cells by targeting c-Met signaling pathway.Cell Mol Biol2023;69:174-8

[40]

Fu X,Chen X.Development of dual aptamers-functionalized c-MET PROTAC degraders for targeted therapy of osteosarcoma.Theranostics2025;15:103-21 PMCID:PMC11667235

[41]

Wang LL,Kozinetz CA.Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome.J Natl Cancer Inst2003;95:669-74

[42]

Ng AJ,Smeets MF.The DNA helicase recql4 is required for normal osteoblast expansion and osteosarcoma formation.PLoS Genet2015;11:e1005160 PMCID:PMC4393104

[43]

Miller CW,Won A,Lampkin B.Alterations of the p53, Rb and MDM2 genes in osteosarcoma.J Cancer Res Clin Oncol1996;122:559-65 PMCID:PMC12200418

[44]

Wang X,Feng C.Detection of p53 and MDM2 gene expression in osteosarcoma with biotin-labelled in situ.Chin J Surg1997;35(3):178-180

[45]

Xie C,Chen B.Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling.Onco Targets Ther2016;9:4005-13

[46]

Skalniak L,Neochoritis CG.A fluorinated indole-based MDM2 antagonist selectively inhibits the growth of p53wt osteosarcoma cells.FEBS J2019;286:1360-74

[47]

Ito K,Date Y.p53 deficiency-dependent oncogenicity of Runx3.Cells2023;12:1122 PMCID:PMC10137280

[48]

Omori K,Date Y.C/ebpα represses the oncogenic Runx3-Myc axis in p53-deficient osteosarcoma development.Oncogene2023;42:2485-94

[49]

Hou P,Yang B.Quantitative analysis of promoter hypermethylation in multiple genes in osteosarcoma.Cancer2006;106:1602-9

[50]

Lopez C,Pena L.Novel germline PTEN mutation associated with cowden syndrome and osteosarcoma.Cancer Genomics Proteomics2018;15:115-20 PMCID:PMC5892603

[51]

Zhou J,Wang W.Association between PTEN and clinical-pathological features of osteosarcoma.Biosci Rep2019;39:BSR20190954

[52]

Song D,Xie H,Wang J.DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line.Exp Ther Med2014;7:1071-6 PMCID:PMC3991544

[53]

Zhang Y,Yang X.H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts.Theranostics2021;11:1473-92 PMCID:PMC7738898

[54]

Yang P,Qi YC.High SENP3 expression promotes cell migration, invasion, and proliferation by modulating DNA methylation of E-cadherin in osteosarcoma.Technol Cancer Res Treat2020;19:1533033820956988 PMCID:PMC7549150

[55]

Sun JM,Xu G.The role of FAS receptor methylation in osteosarcoma metastasis.Int J Mol Sci2023;24:12155 PMCID:PMC10418590

[56]

Wang Y,Zhao C.The correlation between the methylation of PTEN gene and the apoptosis of osteosarcoma cells mediated by SeHA nanoparticles.Colloids Surf B Biointerfaces2019;184:110499

[57]

Kong D,Zhang J.PCAF regulates H3 phosphorylation and promotes autophagy in osteosarcoma cells.Biomed Pharmacother2019;118:109395

[58]

Huang YZ,Shen JJ,Xu YJ.miRNA-296-5p functions as a potential tumor suppressor in human osteosarcoma by targeting SND1.Chin Med J2021;134:564-72

[59]

Abedi S,Mazhar FN.Machine learning and experimental analyses identified miRNA expression models associated with metastatic osteosarcoma.Biochim Biophys Acta Mol Basis Dis2024;1870:167357

[60]

Yang D,He ZNT.Indoleamine 2,3-dioxygenase 1 promotes osteosarcoma progression by regulating tumor-derived exosomal miRNA hsa-miR-23a-3p.Front Pharmacol2023;14:1194094 PMCID:PMC10239870

[61]

Shan HJ,Yao C.MAFG-driven osteosarcoma cell progression is inhibited by a novel miRNA miR-4660.Mol Ther Nucleic Acids2021;24:385-402 PMCID:PMC8039776

[62]

Luo P,He F.HIF-1α-mediated augmentation of miRNA-18b-5p facilitates proliferation and metastasis in osteosarcoma through attenuation PHF2.Sci Rep2022;12:10398 PMCID:PMC9213540

[63]

Liu SH,Xu HH.A novel antisense long non-coding RNA SATB2-AS1 overexpresses in osteosarcoma and increases cell proliferation and growth.Mol Cell Biochem2017;430:47-56

[64]

Li JP,Li J.Microarray expression profile of long noncoding RNAs in human osteosarcoma.Biochem Biophys Res Commun2013;433:200-6

[65]

Gong H,Xiao S.LncRNA KIAA0087 suppresses the progression of osteosarcoma by mediating the SOCS1/JAK2/STAT3 signaling pathway.Exp Mol Med2023;55:831-43 PMCID:PMC10167219

[66]

Pan X,Liu C.LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis.Cell Mol Biol Lett2022;27:5 PMCID:PMC8903679

[67]

Shen Y,Pan X.LncRNA KCNQ1OT1 sponges miR-34c-5p to promote osteosarcoma growth via ALDOA enhanced aerobic glycolysis.Cell Death Dis2020;11:278 PMCID:PMC7181648

[68]

Yang D,Fan L.LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4.Cancer Lett2020;473:33-49

[69]

Xie W,Dou L.Allicin affects immunoreactivity of osteosarcoma cells through lncRNA CBR3-AS1.Heliyon2024;10:e31971 PMCID:PMC11214447

[70]

Tang N,Su Y,Huang T.The role of disulfidptosis-associated LncRNA-LINC01137 in osteosarcoma biology and its regulatory effects on macrophage polarization.Funct Integr Genomics2024;24:219

[71]

Li R,Zhou Y.LncRNA HOXA-AS3 promotes cell proliferation and invasion via targeting miR-218-5p/FOXP1 axis in osteosarcoma.Sci Rep2024;14:16581 PMCID:PMC11254915

[72]

Tao H,Liu H,Wang Y.Wnt/β-catenin signaling pathway activation reverses gemcitabine resistance by attenuating Beclin1-mediated autophagy in the MG63 human osteosarcoma cell line.Mol Med Rep2017;16:1701-6 PMCID:PMC5562091

[73]

Wang Q,Wang Q.Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9.PLoS One2017;12:e0180558 PMCID:PMC5493424

[74]

Chen L,Xu Y,Zou YS.CCAR2 promotes a malignant phenotype of osteosarcoma through Wnt/β-catenin-dependent transcriptional activation of SPARC.Biochem Biophys Res Commun2021;580:67-73

[75]

Chen T,Lian X.MUC 15 promotes osteosarcoma cell proliferation, migration and invasion through livin, MMP-2/MMP-9 and Wnt/β-catenin signal pathway.J Cancer2021;12:467-73 PMCID:PMC7739004

[76]

Giatagana EM,Gaardløs M,Samsonov SA.Rapamycin-induced autophagy in osteosarcoma cells is mediated via the biglycan/Wnt/β-catenin signaling axis.Am J Physiol Cell Physiol2022;323:C1740-56

[77]

Ji H,Wang Y.CD44 expression is correlated with osteosarcoma cell progression and immune infiltration and affects the Wnt/β-catenin signaling pathway.J Bone Oncol2023;41:100487 PMCID:PMC10242553

[78]

Martins-Neves SR,Wijers-Koster PM.Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling.Cancer Lett2016;370:286-95

[79]

Tran DTP,Pongsuchart M.ROR2 regulates the survival of murine osteosarcoma cells in lung capillaries.J Cancer Metastasis Treat2020;2020

[80]

Lobry C,Aifantis I.Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think.J Exp Med2011;208:1931-5 PMCID:PMC3182047

[81]

Qin J,Zhao C.Notch signaling regulates osteosarcoma proliferation and migration through Erk phosphorylation.Tissue Cell2019;59:51-61

[82]

Cheng J,Wan R.CEMIP promotes osteosarcoma progression and metastasis through activating notch signaling pathway.Front Oncol2022;12:919108 PMCID:PMC9361750

[83]

Liang G,He J.Spindle and kinetochore-related complex subunit 3 has a protumour function in osteosarcoma by activating the Notch pathway.Toxicol Appl Pharmacol2024;483:116826

[84]

Zhang J,Lu S.The role of Notch ligand Jagged1 in osteosarcoma proliferation, metastasis, and recurrence.J Orthop Surg Res2021;16:226 PMCID:PMC8006358

[85]

Yun HM,Kwon YJ.Effect of spicatoside a on anti-osteosarcoma MG63 cells through reactive oxygen species generation and the inhibition of the PI3K-AKT-mTOR pathway.Antioxidants2024;13:1162 PMCID:PMC11505237

[86]

Huang X,Wei Z,Wei Z.SLC38A5 suppresses ferroptosis through glutamine-mediated activation of the PI3K/AKT/mTOR signaling in osteosarcoma.J Transl Med2024;22:1004 PMCID:PMC11542360

[87]

Jiang N,Xie X.lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition.Cancer Lett2017;405:46-55

[88]

Zhu J,Lu Y.Glaucocalyxin a exerts anticancer effect on osteosarcoma by inhibiting GLI1 nuclear translocation via regulating PI3K/Akt pathway.Cell Death Dis2018;9:708 PMCID:PMC5999605

[89]

Meng CY,Bai R.MicroRNA22 mediates the cisplatin resistance of osteosarcoma cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway.Oncol Rep2020;43:1169-86 PMCID:PMC7057943

[90]

Qiu C,Shen N.MNAT1 promotes proliferation and the chemo-resistance of osteosarcoma cell to cisplatin through regulating PI3K/Akt/mTOR pathway.BMC Cancer2020;20:1187 PMCID:PMC7713032

[91]

Chen Z,Hu Y,Tian Y.Arnicolide D inhibits proliferation and induces apoptosis of osteosarcoma cells through PI3K/Akt/mTOR pathway.Anticancer Agents Med Chem2024;24:1288-94

[92]

Jing D,Chen X.Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 Via the JAK2-STAT3-PDL1.Pharmacol Res2022;182:106287

[93]

Dixon SJ,Lamprecht MR.Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell2012;149:1060-72 PMCID:PMC3367386

[94]

Liu Q.The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin.Cell Biol Int2019;43:1245-56

[95]

Chen W,Yu N.Bone-targeting exosome nanoparticles activate Keap1 / Nrf2 / GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells.J Nanobiotechnology2023;21:355 PMCID:PMC10541697

[96]

Yuan C,Zhu K,Xie W.Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway.Exp Biol Med2023;248:2183-97 PMCID:PMC10903231

[97]

Li Y.Naringenin induces ferroptosis in osteosarcoma cells through the STAT3-MGST2 signaling pathway.J Bone Oncol2025;50:100657 PMCID:PMC11743371

[98]

Shao Y.PTPRC inhibits ferroptosis of osteosarcoma cells via blocking TFEB/FTH1 signaling.Mol Biotechnol2024;66:2985-94

[99]

Cersosimo F,Bernardini G.Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy.Int J Mol Sci2020;21:5207 PMCID:PMC7432207

[100]

Li Y,Wei R. Identification and functional analysis of EPOR+ tumor-associated macrophages in human osteosarcoma lung metastasis. J Immunol Res 2020;2020:9374240.[PMID:32908942 DOI:10.1155/2020/9374240 PMCID:PMC7450330] Caution!

[101]

Wang J,Chen T.Curcumol synergizes with cisplatin in osteosarcoma by inhibiting M2-like polarization of tumor-associated macrophages.Molecules2022;27:4345 PMCID:PMC9318016

[102]

Guo Z,Jon S.Non-invasive physical stimulation to modulate the tumor microenvironment: unveiling a new frontier in cancer therapy.BIO Integr2024;5:1-14

[103]

Yan CF,Qun WS.Tumor-associated macrophages-derived exo-let-7a promotes osteosarcoma metastasis via targeting C15orf41 in osteosarcoma.Environ Toxicol2023;38:1318-31

[104]

Tatsuno R,Komohara Y.Pivotal role of IL-8 derived from the interaction between osteosarcoma and tumor-associated macrophages in osteosarcoma growth and metastasis via the FAK pathway.Cell Death Dis2024;15:108 PMCID:PMC10834992

[105]

Hashimoto K,Akagi M.Characterization of PD-1/PD-L1 immune checkpoint expression in osteosarcoma.Diagnostics2020;10:528 PMCID:PMC7459780

[106]

Wang J,Sun X.Exosomal PD-L1 and N-cadherin predict pulmonary metastasis progression for osteosarcoma patients.J Nanobiotechnology2020;18:151 PMCID:PMC7579953

[107]

Toda Y,Yamada Y.PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: comparative study of primary and metastatic lesions.J Cancer Res Clin Oncol2020;146:2607-20 PMCID:PMC11804367

[108]

Shi C,Wang B,Zhu AX.Pseudogene MSTO2P enhances hypoxia-induced osteosarcoma malignancy by upregulating PD-L1.Biochem Biophys Res Commun2020;530:673-9

[109]

Zheng S,Jiang Y.LRP8 activates STAT3 to induce PD-L1 expression in osteosarcoma.Tumori2021;107:238-46

[110]

Lin J,Jin J.MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression.Oncoimmunology2022;11:2024941

[111]

Wu H,Dai R,Feng H.Transferrin receptor-1 and VEGF are prognostic factors for osteosarcoma.J Orthop Surg Res2019;14:296 PMCID:PMC6727552

[112]

Al-Khalaf HH.AUF1 positively controls angiogenesis through mRNA stabilization-dependent up-regulation of HIF-1α and VEGF-A in human osteosarcoma.Oncotarget2019;10:4868-79 PMCID:PMC6690669

[113]

Xue M,Cui J. MicroRNA-638 expression change in osteosarcoma patients via PLD1 and VEGF expression. Exp Ther Med 2019;17:3899-906.[PMID:30988774 DOI:10.3892/etm.2019.7429 PMCID:PMC6447936] Caution!

[114]

Ji X,Shen P.Circular RNA circ_001621 promotes osteosarcoma cells proliferation and migration by sponging miR-578 and regulating VEGF expression.Cell Death Dis2020;11:18 PMCID:PMC6944700

[115]

Kaławaj K,Mizerska-Kowalska M.Alpha ketoglutarate exerts in vitro anti-osteosarcoma effects through inhibition of cell proliferation, induction of apoptosis via the JNK and caspase 9-dependent mechanism, and suppression of TGF-β and VEGF production and metastatic potential of cells.Int J Mol Sci2020;21:9406 PMCID:PMC7763003

[116]

Jubelin C,Cochonneau D,Heymann MF.Biological evidence of cancer stem-like cells and recurrent disease in osteosarcoma.Cancer Drug Resist2022;5:184-98 PMCID:PMC8992588

[117]

Li J,Li ZY.CD133 expression in osteosarcoma and derivation of CD133+ cells.Mol Med Rep2013;7:577-84

[118]

Li K,Tian J,Pan J.Downregulation of DNA-PKcs suppresses P-gp expression via inhibition of the Akt/NF-κB pathway in CD133-positive osteosarcoma MG-63 cells.Oncol Rep2016;36:1973-80

[119]

Wang JH,Guo FJ.Knockdown of STIP1 inhibits the invasion of CD133positive cancer stemlike cells of the osteosarcoma MG63 cell line via the PI3K/Akt and ERK1/2 pathways.Int J Mol Med2020;46:2251-9

[120]

Xu N,Wang W.The prognostic role of CD133 expression in patients with osteosarcoma.Clin Exp Med2020;20:261-7

[121]

He A,Huang Y.CD133+ CD44+ cells mediate in the lung metastasis of osteosarcoma.J Cell Biochem2015;116:1719-29

[122]

Shiratori H,Uesugi M,Saito T.Acceleration of lung metastasis by up-regulation of CD44 expression in osteosarcoma-derived cell transplanted mice.Cancer Lett2001;170:177-82

[123]

Kim CK,Kim SJ,Heo J.Correlation of IGF1R expression with ABCG2 and CD44 expressions in human osteosarcoma.Genes Genomics2018;40:381-8

[124]

Gerardo-Ramírez M,Giam V.CD44 contributes to the regulation of MDR1 protein and doxorubicin chemoresistance in osteosarcoma.Int J Mol Sci2022;23:8616 PMCID:PMC9368984

[125]

Wang B,Wang X.POLE2 promotes osteosarcoma progression by enhancing the stability of CD44.Cell Death Discov2024;10:177 PMCID:PMC11021398

[126]

Cortini M,Avnet S,Baldini N.Tumor-activated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion.PLoS One2016;11:e0166500 PMCID:PMC5112800

[127]

Li Z,Hu R,Xu W.LncRNA B4GALT1-AS1 recruits HuR to promote osteosarcoma cells stemness and migration via enhancing YAP transcriptional activity.Cell Prolif2018;51:e12504

[128]

Yang Z,Lu W,Chen J.LncRNA WAC-AS1 promotes osteosarcoma Metastasis and stemness by sponging miR-5047 to upregulate SOX2.Biol Direct2023;18:74 PMCID:PMC10644615

[129]

Liu F,Li Y.Overexpression of SENP1 reduces the stemness capacity of osteosarcoma stem cells and increases their sensitivity to HSVtk/GCV.Int J Oncol2018;53:2010-20

[130]

Chen Y,Huang M.MAFB promotes cancer stemness and tumorigenesis in osteosarcoma through a Sox9-mediated positive feedback loop.Cancer Res2020;80:2472-83

[131]

Wei Z,Xia K.DUSP3 restrains the progression and stemness property of osteosarcoma through regulating EGFR/STAT3/SOX2 axis.Int J Biol Sci2025;21:160-74 PMCID:PMC11667805

[132]

Adel N.Overview of chemotherapy-induced nausea and vomiting and evidence-based therapies.Am J Manag Care2017;23(14 Suppl):S259-S265

[133]

Zeng J,Meng XD.Systematic review of Buzhong Yiqi method in alleviating cancer-related fatigue: a meta-analysis and exploratory network pharmacology approach.Front Pharmacol2024;15:1451773 PMCID:PMC11573511

[134]

Morishige KI.Traditional herbal medicine, Rikkunshito, for chemotherapy-induced nausea and vomiting.J Gynecol Oncol2017;28:e57 PMCID:PMC5540717

[135]

Duan X,Bao Q.UPLC-Q-TOF-MS study of the mechanism of THSWD for breast cancer treatment.Front Pharmacol2019;10:1625 PMCID:PMC6993183

[136]

Huang J,Cheung F,Wang N.Integrating network pharmacology and experimental models to investigate the efficacy of coptidis and scutellaria containing huanglian jiedu decoction on hepatocellular carcinoma.Am J Chin Med2020;48:161-82

[137]

Hosseini A,Banach M.Quercetin and metabolic syndrome: a review.Phytother Res2021;35:5352-64

[138]

Georgiou N,Routsi EA.Quercetin: a potential polydynamic drug.Molecules2023;28:8141 PMCID:PMC10745404

[139]

Alizadeh SR.Quercetin derivatives: drug design, development, and biological activities, a review.Eur J Med Chem2022;229:114068

[140]

Chen YQ,Li K,Feng HJ.Thermo-responsive nano-hydrogel-based delivery of Saikosaponin a to enhance anti-PD-1 therapy in osteosarcoma.Nanomedicine2025;20:1677-91 PMCID:PMC12239799

[141]

Wang W,Wang L,Goh BC.Curcumin in cancer therapy: exploring molecular mechanisms and overcoming clinical challenges.Cancer Lett2023;570:216332

[142]

Xu C,Zandieh Doulabi B,Liu Y.Paradox: curcumin, a natural antioxidant, suppresses osteosarcoma cells via excessive reactive oxygen species.Int J Mol Sci2023;24:11975 PMCID:PMC10418684

[143]

Huang C,Chen YH,Chou WH.Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells.BMC Complement Med Ther2020;20:68 PMCID:PMC7076840

[144]

Wen L,Qiu MH,Wong CK.Artemisinin and its derivatives as potential anticancer agents.Molecules2024;29:3886 PMCID:PMC11356986

[145]

Li Z,Wu H.Artemisinin inhibits angiogenesis by regulating p38 MAPK/CREB/TSP-1 signaling pathway in osteosarcoma.J Cell Biochem2019;120:11462-70

[146]

Jing D,Zhang Z.2-Hydroxy-3-methylanthraquinone inhibits homologous recombination repair in osteosarcoma through the MYC-CHK1-RAD51 axis.Mol Med2023;29:15 PMCID:PMC9887913

[147]

Hu T,Wei N.Chemosensitive effects of Astragaloside IV in osteosarcoma cells via induction of apoptosis and regulation of caspase-dependent Fas/FasL signaling.Pharmacol Rep2017;69:1159-64

[148]

Wen RJ,Zhuang HW.Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis.Phytomedicine2023;116:154881

[149]

Zhang Z,Wang H.The history, beneficial ingredients, mechanism, processing, and products of Panax ginseng for medicinal and edible value.Food Med Homol2025;

[150]

Liu MY,Zhao X.Exploration in the mechanism of ginsenoside Rg5 for the treatment of osteosarcoma by network pharmacology and molecular docking.Orthop Surg2024;16:462-70 PMCID:PMC10834211

[151]

Li HY,Sun LL.Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study.Cell Death Dis2015;6:e1604 PMCID:PMC4669742

[152]

Ni Y,Xu L,Xiao P.Pharmacological activities and mechanisms of proteins and peptides derived from traditional Chinese medicine.Sci Tradit Chin Med2024;2:260-75

[153]

Zhao Z,Xu Y.Groenlandicine enhances cisplatin sensitivity in cisplatin-resistant osteosarcoma cells through the BAX/Bcl-2/Caspase-9/Caspase-3 pathway.J Bone Oncol2024;48:100631 PMCID:PMC11388767

[154]

Zhao W,Guan M.Polydatin enhances the chemosensitivity of osteosarcoma cells to paclitaxel.J Cell Biochem2019;120:17481-90

[155]

Wang ZD,Xia YZ,Yang L.Reversal of multidrug resistance by icaritin in doxorubicin-resistant human osteosarcoma cells.Chin J Nat Med2018;16:20-8

[156]

Lu M,Lu X,Shi Y.Notoginsenoside R1 counteracts mesenchymal stem cell-evoked oncogenesis and doxorubicin resistance in osteosarcoma cells by blocking IL-6 secretion-induced JAK2/STAT3 signaling.Invest New Drugs2021;39:416-25

[157]

Xie C,Chen J.Cu-Tremella fuciformis polysaccharide-based tumor microenvironment-responsive injectable gels for cuproptosis-based synergistic osteosarcoma therapy.Int J Biol Macromol2024;270:132029

[158]

Lu S,Yu Y.Glutathione-scavenging celastrol-Cu nanoparticles induce self-amplified cuproptosis for augmented cancer immunotherapy.Adv Mater2024;36:2404971

[159]

Niu Y,He T,Yu Y.Smart multifunctional polyurethane microcapsules for the quick release of anticancer drugs in BGC 823 and HeLa tumor cells.J Mater Chem B2017;5:9477-81

[160]

Yi X,Feng Y,Wu Y.Danhong injection attenuates doxorubicin-induced cardiotoxicity in rats via suppression of apoptosis: network pharmacology analysis and experimental validation.Front Pharmacol2022;13:929302 PMCID:PMC9441549

[161]

Shen J,Zhang K.Effect of angelica polysaccharide on mouse myeloid-derived suppressor cells.Front Immunol2022;13:989230 PMCID:PMC9500156

[162]

Fu L,Zhou X,He C.Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma.Bioact Mater2022;17:221-33 PMCID:PMC8965157

[163]

Ding X,Liang J.Dihydroartemisinin potentiates VEGFR-TKIs antitumorigenic effect on osteosarcoma by regulating Loxl2/VEGFA expression and lipid metabolism pathway.J Cancer2023;14:809-20 PMCID:PMC10088882

[164]

Zhang X,Zhang Y.HA-DOPE-modified honokiol-loaded liposomes targeted therapy for osteosarcoma.Int J Nanomedicine2022;17:5137-51

[165]

Yu T,Chang X.Research progress of nanomaterials in chemotherapy of osteosarcoma.Orthop Surg2023;15:2244-59 PMCID:PMC10475694

[166]

Shen M,Bing T,Liu X.Alendronate triggered dual-cascade targeting prodrug nanoparticles for enhanced tumor penetration and STING activation of osteosarcoma.Adv Funct Mater2023;33:2307013

[167]

Zhang Y,Liu R.Artificial intelligence in clinical trials of lung cancer: current and future prospects.Intell Oncol2025;1:34-51

[168]

Wang Y,Chen Y.Antitumor effects of immunity-enhancing traditional Chinese medicine.Biomed Pharmacother2020;121:109570

[169]

Yang J,Zhou X.Acupuncture for palliative cancer pain management: systematic review.BMJ Support Palliat Care2021;11:264-70 PMCID:PMC8380897

[170]

He Y,May BH.Clinical evidence for association of acupuncture and acupressure with improved cancer pain: a systematic review and meta-analysis.JAMA Oncol2020;6:271-8 PMCID:PMC6990758

[171]

Yan Y,Zhang L,Witt CM.Acupuncture for the prevention of chemotherapy-induced nausea and vomiting in cancer patients: a systematic review and meta-analysis.Cancer Med2023;12:12504-17 PMCID:PMC10278514

[172]

Wang M,Ge J.The immunomodulatory mechanisms for acupuncture practice.Front Immunol2023;14:1147718 PMCID:PMC10117649

[173]

Xu X,He M.The effect of acupuncture on tumor growth and gut microbiota in mice inoculated with osteosarcoma cells.Chin Med2020;15:33 PMCID:PMC7140491

[174]

Wang N,Zhang D.Research progress on the immunomodulatory mechanism of acupuncture in tumor immune microenvironment.Front Immunol2023;14:1092402 PMCID:PMC9971227

[175]

Xiang Y,Liu J.Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma.Front Oncol2023;13:1219211 PMCID:PMC10315918

[176]

Ma YS,Wu RS.Bisdemethoxycurcumin suppresses human osteosarcoma U2 OS cell migration and invasion via affecting the PI3K/Akt/NFκB, PI3K/Akt/GSK3β and MAPK signaling pathways in vitro.Oncol Rep2022;48:210

[177]

Zhang L,Huang Y.Cardamonin inhibits the growth of human osteosarcoma cells through activating P38 and JNK signaling pathway.Biomed Pharmacother2021;134:111155

[178]

Jiwa H,Qu X.Casticin induces ferroptosis in human osteosarcoma cells through Fe2+ overload and ROS production mediated by HMOX1 and LC3-NCOA4.Biochem Pharmacol2024;226:116346

[179]

Vundavilli H,Sima C.Anti-tumor effects of cryptotanshinone (C19H20O3) in human osteosarcoma cell lines.Biomed Pharmacother2022;150:112993

[180]

Huang X,Ruan S,Zhang J.The use of matrine to inhibit osteosarcoma cell proliferation via the regulation of the MAPK/ERK signaling pathway.Front Oncol2024;14:1338811 PMCID:PMC11330765

[181]

Xu X,Wu H.Berberine inhibits the growth of osteosarcoma through modulating MMP/NM-23 and MAPK/JNK signal pathways.Am J Transl Res2023;15:729-44 PMCID:PMC10006790

[182]

Gao X,Wang Y,Zhang J.Berberine and cisplatin exhibit synergistic anticancer effects on osteosarcoma MG-63 cells by inhibiting the MAPK pathway.Molecules2021;26:1666 PMCID:PMC8002572

[183]

Wang W,Ding Z.Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway.J Cell Mol Med2019;23:6454-65 PMCID:PMC6714145

[184]

Cai Q,Sun Y.Study on the mechanism of andrographolide activation.Front Neurosci2022;16:977376 PMCID:PMC9513578

[185]

Annamalai V,Periyannan V.JAK1/STAT3 regulatory effect of β-caryophyllene on MG-63 osteosarcoma cells via ROS-induced apoptotic mitochondrial pathway by DNA fragmentation.J Biochem Mol Toxicol2020;34:e22514

[186]

Sun Y,Wang Y.Curcumin inhibits the proliferation and invasion of MG-63 cells through inactivation of the p-JAK2/p-STAT3 pathway.Onco Targets Ther2019;12:2011-21

AI Summary AI Mindmap
PDF

43

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/