The role of circular RNAs in glucose metabolic reprogramming: impact on cancer progression and therapeutic implications in breast cancer

Yiran Liang , Qifeng Yang

Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11 : 3

PDF
Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11:3 DOI: 10.20517/2394-4722.2024.93
review-article

The role of circular RNAs in glucose metabolic reprogramming: impact on cancer progression and therapeutic implications in breast cancer

Author information +
History +
PDF

Abstract

Breast cancer is one of the most common female malignant tumors, which seriously endangers human health. Glucose metabolic reprogramming in rapidly proliferating cancers drives increased glycolysis to meet energy needs, promoting tumor growth, acidifying the tumor microenvironment, and impairing immune function, which diminishes therapeutic efficacy. Circular RNAs (circRNAs), as key regulators of cellular processes, are increasingly recognized for their involvement in the metabolic reprogramming of cancer. Concurrently, specific circRNAs could be released by tumor cells via exosomes to facilitate intercellular communication, significantly impacting glucose metabolism, cancer progression, and therapy resistance. However, the role of circRNAs in breast cancer and their mechanisms in regulating glucose metabolism remain unclear. Therefore, elucidating these metabolic regulatory pathways could provide valuable insights for developing targeted strategies to exploit metabolic vulnerabilities and improve the prognosis of breast cancer.

Keywords

Breast cancer / glucose metabolic reprogramming / exosome / metastasis / prognosis

Cite this article

Download citation ▾
Yiran Liang, Qifeng Yang. The role of circular RNAs in glucose metabolic reprogramming: impact on cancer progression and therapeutic implications in breast cancer. Journal of Cancer Metastasis and Treatment, 2025, 11: 3 DOI:10.20517/2394-4722.2024.93

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-Wahab AF,Al-Harizy RM.Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy.Pharmacol Res2019;150:104511

[2]

Tang Q,Zhao B.Reprogramming of glucose metabolism: the hallmark of malignant transformation and target for advanced diagnostics and treatments.Biomed Pharmacother2024;178:117257

[3]

Zhang F,Fan Z.circRNAs and their relationship with breast cancer: a review.World J Surg Oncol2022;20:373 PMCID:PMC9703749

[4]

Liu Z,Liang G.Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p.Cell Death Dis2019;10:55 PMCID:PMC6343010

[5]

Cao L,Dong Y.Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2.Cell Death Dis2020;11:145 PMCID:PMC7039970

[6]

Liu Y,Zong ZH,Zhao Y.CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the development of endometrial cancer.J Cell Mol Med2020;24:6898-907 PMCID:PMC7299690

[7]

Chen RX,Yang LL.Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS.Eur Rev Med Pharmacol Sci2019;23:8771-8

[8]

Yang H,Meng Q.CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer.Mol Cancer2020;19:13 PMCID:PMC6977296

[9]

Kansara S,Badal AK.The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer.Semin Cancer Biol2023;95:1-12

[10]

Liang Y,Luo D.Exosomal circSIPA1L3-mediated intercellular communication contributes to glucose metabolic reprogramming and progression of triple negative breast cancer.Mol Cancer2024;23:125 PMCID:PMC11161950

[11]

Lei P,Sheldon M,Yao F.Role of glucose metabolic reprogramming in breast cancer progression and drug resistance.Cancers2023;15:3390 PMCID:PMC10341343

[12]

Nakagawa T,Ogawa A.Bone marrow carcinomatosis in a stage IV breast cancer patient treated by letrozole as first-line endocrine therapy.Case Rep Oncol2022;15:436-41 PMCID:PMC9149407

[13]

Lin J,Liang J.The roles of glucose metabolic reprogramming in chemo- and radio-resistance.J Exp Clin Cancer Res2019;38:218 PMCID:PMC6533757

[14]

Cappelletti V,Miodini P,Dugo M.Metabolic footprints and molecular subtypes in breast cancer.Dis Markers2017;2017:7687851 PMCID:PMC5757146

[15]

Wang L,Wang X.The metabolic mechanisms of breast cancer metastasis.Front Oncol2020;10:602416 PMCID:PMC7817624

[16]

Martinez-Outschoorn UE,Whitaker-Menezes D.Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.Cell Cycle2010;9:2423-33

[17]

Walsh AJ,Manning HC.Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer.Cancer Res2013;73:6164-74 PMCID:PMC3801432

[18]

Kim S,Jung WH.Metabolic phenotypes in triple-negative breast cancer.Tumour Biol2013;34:1699-712

[19]

Zhang L,Liu S.Targeting breast cancer stem cells.Int J Biol Sci2023;19:552-70 PMCID:PMC9830502

[20]

Park SY,Nam JS.Targeting cancer stem cells in triple-negative breast cancer.Cancers2019;11:965 PMCID:PMC6678244

[21]

Wang ZH,Zhang P,Zhou Q.Lactate in the tumour microenvironment: from immune modulation to therapy.EBioMedicine2021;73:103627 PMCID:PMC8524104

[22]

DeNardo DG.Macrophages as regulators of tumour immunity and immunotherapy.Nat Rev Immunol2019;19:369-82 PMCID:PMC7339861

[23]

Shi Q,Liu Y.Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance.Cancer Cell2022;40:1207-22.e10

[24]

Angelin A,Dahiya S.Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments.Cell Metab2017;25:1282-93.e7 PMCID:PMC5462872

[25]

Quinn WJ 3rd,TeSlaa T.Lactate limits T cell proliferation via the NAD(H) redox state.Cell Rep2020;33:108500 PMCID:PMC7830708

[26]

Raychaudhuri D,Sinha BP.Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells.Front Immunol2019;10:1878 PMCID:PMC6692712

[27]

Pavlova NN,Thompson CB.The hallmarks of cancer metabolism: still emerging.Cell Metab2022;34:355-77 PMCID:PMC8891094

[28]

Ishfaq M,Riaz SK.Expression of HK2, PKM2, and PFKM Is associated with metastasis and late disease onset in breast cancer patients.Genes2022;13:549 PMCID:PMC8955648

[29]

Sang R,Deng A.Degradation of hexokinase 2 blocks glycolysis and induces GSDME-dependent pyroptosis to amplify immunogenic cell death for breast cancer therapy.J Med Chem2023;66:8464-83

[30]

Lin J,Xiang Z.Glycolytic enzyme HK2 promotes PD-L1 expression and breast cancer cell immune evasion.Front Immunol2023;14:1189953 PMCID:PMC10291184

[31]

Umar SM,Kahol S.Prognostic and therapeutic relevance of phosphofructokinase platelet-type (PFKP) in breast cancer.Exp Cell Res2020;396:112282

[32]

Moon JS,Koh E.Krüppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer.J Biol Chem2011;286:23808-16 PMCID:PMC3129162

[33]

Yeerken D,Wang Y.PFKP is transcriptionally repressed by BRCA1/ZBRK1 and predicts prognosis in breast cancer.PLoS One2020;15:e0233750 PMCID:PMC7259711

[34]

Huang Y,Wang C.p53-responsive CMBL reprograms glucose metabolism and suppresses cancer development by destabilizing phosphofructokinase PFKP.Cell Rep2023;42:113426

[35]

Peng ZM,Wang T.PFKP deubiquitination and stabilization by USP5 activate aerobic glycolysis to promote triple-negative breast cancer progression.Breast Cancer Res2024;26:10 PMCID:PMC10787506

[36]

Das R,Singh AA.Mechanistic investigation of thiazole-based pyruvate kinase M2 inhibitor causing tumor regression in triple-negative breast cancer.J Med Chem2024;67:3339-57

[37]

Yang W,Hawke D.PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis.Cell2012;150:685-96 PMCID:PMC3431020

[38]

Zhang Y,Lu WC,Chang CJ.Metabolic switch regulates lineage plasticity and induces synthetic lethality in triple-negative breast cancer.Cell Metab2024;36:193-208.e8

[39]

Liu D,Wu C.Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: a meta-analysis.Cancer Manag Res2019;11:3611-9 PMCID:PMC6497911

[40]

Han J,Wang J.Glycolysis-related lncRNA TMEM105 upregulates LDHA to facilitate breast cancer liver metastasis via sponging miR-1208.Cell Death Dis2023;14:80 PMCID:PMC9898275

[41]

Cui B,Tian P.Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells.J Clin Invest2019;129:1030-46

[42]

Chen X,Zhang Y.Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer.Nat Commun2022;13:7160 PMCID:PMC9684133

[43]

Khajah MA,Luqmani YA.Lactate dehydrogenase A or B knockdown reduces lactate production and inhibits breast cancer cell motility in vitro.Front Pharmacol2021;12:747001 PMCID:PMC8564068

[44]

Wang S,Wang Z.Lactate dehydrogenase-A (LDH-A) preserves cancer stemness and recruitment of tumor-associated macrophages to promote breast cancer progression.Front Oncol2021;11:654452 PMCID:PMC8225328

[45]

Yang Z,Gao Q.Lysine lactylation in the regulation of tumor biology.Trends Endocrinol Metab2024;35:720-31

[46]

Sun M,Duan Y.GLUT1 participates in tamoxifen resistance in breast cancer cells through autophagy regulation.Naunyn Schmiedebergs Arch Pharmacol2021;394:205-16

[47]

Deng Y,Deng T.Clinicopathological and prognostic significance of GLUT1 in breast cancer: a meta-analysis.Medicine2018;97:e12961 PMCID:PMC6283226

[48]

Zhu P,Wang X.Transcription factor c-Jun modulates GLUT1 in glycolysis and breast cancer metastasis.BMC Cancer2022;22:1283 PMCID:PMC9730598

[49]

Lin C.YAP1-TEAD1-Glut1 axis dictates the oncogenic phenotypes of breast cancer cells by modulating glycolysis.Biomed Pharmacother2017;95:789-94

[50]

Avanzato D,Ducano N.High USP6NL levels in breast cancer sustain chronic AKT phosphorylation and GLUT1 stability fueling aerobic glycolysis.Cancer Res2018;78:3432-44

[51]

Giacomello M,Glytsou C.The cell biology of mitochondrial membrane dynamics.Nat Rev Mol Cell Biol2020;21:204-24

[52]

Rodrigues T.Therapeutic potential of targeting mitochondrial dynamics in cancer.Biochem Pharmacol2020;182:114282

[53]

Xing Z,Wang X.CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis.Cell Death Discov2021;7:218 PMCID:PMC8380247

[54]

Zan X,Wang G.Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during triple-negative breast cancer progression by modulating the miR-28-5p/LDHA pathway.Reprod Biol Endocrinol2022;20:138 PMCID:PMC9476576

[55]

Xing Z,Liu J,Feng K.Hsa_circ_0069094 accelerates cell malignancy and glycolysis through regulating the miR-591/HK2 axis in breast cancer.Cell Signal2021;79:109878

[56]

Cheng H,Tan L.Circ_0001955 plays a carcinogenic role in breast cancer via positively regulating GLUT1 via decoying miR-1299.Thorac Cancer2022;13:913-24 PMCID:PMC8977153

[57]

Paredes F,San Martin A.Metabolic adaptation in hypoxia and cancer.Cancer Lett2021;502:133-42 PMCID:PMC8158653

[58]

Stubbs M.The altered metabolism of tumors: HIF-1 and its role in the Warburg effect.Adv Enzyme Regul2010;50:44-55

[59]

Chen Z,Xiong Y,Gu Y.CircZFR functions as a sponge of miR-578 to promote breast cancer progression by regulating HIF1A expression.Cancer Cell Int2020;20:400 PMCID:PMC7437024

[60]

Liang G,Tan L,Jiang WG.HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment.Anticancer Res2017;37:4337-43

[61]

Ren S,Feng Y.Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia.J Exp Clin Cancer Res2019;38:388 PMCID:PMC6727545

[62]

Han X,Lu C,Yang T.Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis.Cell Death Differ2022;29:1864-73 PMCID:PMC9433372

[63]

Xu A,Cai Q.CircXPO6 promotes breast cancer progression through competitively inhibiting the ubiquitination degradation of c-Myc. Mol Cell Biochem 2024.

[64]

Yang Q,Wu N.A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation.Cell Death Differ2017;24:1609-20 PMCID:PMC5563992

[65]

Li Q,Wu S.CircACC1 regulates assembly and activation of AMPK complex under metabolic stress.Cell Metab2019;30:157-73.e7

[66]

Chen L,Yuan H.Circ_100395 impedes malignancy and glycolysis in papillary thyroid cancer: Involvement of PI3K/AKT/mTOR signaling pathway.Immunol Lett2022;246:10-7

[67]

Li J,Cheng H.Circ-RPPH1 knockdown retards breast cancer progression via miR-328-3p-mediated suppression of HMGA2.Clin Breast Cancer2022;22:e286-95

[68]

Lin Z,Zhou J.Exosomal circRNAs in cancer: implications for therapy resistance and biomarkers.Cancer Lett2023;566:216245

[69]

Lu C,Hu W.Endoplasmic reticulum stress promotes breast cancer cells to release exosomes circ_0001142 and induces M2 polarization of macrophages to regulate tumor progression.Pharmacol Res2022;177:106098

[70]

Liu Y,Hua F.Exosomal circCARM1 from spheroids reprograms cell metabolism by regulating PFKFB2 in breast cancer.Oncogene2022;41:2012-25

[71]

Sharma D,Rani R.Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics.Semin Cancer Biol2022;87:184-95

[72]

Wu Q,Deblois G.GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer.Nat Commun2020;11:4205 PMCID:PMC7442809

[73]

Liu J,Zhang T.Metabolic enzyme LDHA activates Rac1 GTPase as a noncanonical mechanism to promote cancer.Nat Metab2022;4:1830-46 PMCID:PMC9794117

[74]

Dwarakanath BS,Banerji AK.Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects.J Cancer Res Ther2009;5 Suppl 1:S21-6

[75]

Stein EM,Fathi AT.Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study.Blood2021;137:1792-803 PMCID:PMC8020270

[76]

Fu D,Wei J.HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer.Cell Commun Signal2018;16:8 PMCID:PMC5819211

[77]

Farabegoli F,Manerba M,Roberti M.Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways.Eur J Pharm Sci2012;47:729-38

[78]

Agrawal A,Gupta D.Preliminary study on serum lactate dehydrogenase (LDH)-prognostic biomarker in carcinoma breast.J Clin Diagn Res2016;10:BC06-8 PMCID:PMC4843241

[79]

Paydary K,Zadeh MZ.The evolving role of FDG-PET/CT in the diagnosis, staging, and treatment of breast cancer.Mol Imaging Biol2019;21:1-10

[80]

Yang Q,He AT.Circular RNAs: expression, localization, and therapeutic potentials.Mol Ther2021;29:1683-702 PMCID:PMC8116570

[81]

Purrahman D,Saki N,Kurkowska-Jastrzębska I.Involvement of progranulin (PGRN) in the pathogenesis and prognosis of breast cancer.Cytokine2022;151:155803

[82]

Wu P,Peng M.Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA.Mol Cancer2020;19:22 PMCID:PMC6998289

[83]

Huang D,Ye S.Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides.Nature2024;625:593-602

[84]

Yang F,Guo Y.p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitating ZRF1/BRD4 transactivation.Mol Cancer2021;20:123 PMCID:PMC8474885

[85]

Mela A,Tysarowski A.The impact of changing the funding model for genetic diagnostics and improved access to personalized medicine in oncology.Expert Rev Pharmacoecon Outcomes Res2023;23:43-54

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/