Interconnections within the tumor microenvironment: extracellular vesicles as critical players of metabolic reprogramming in tumor cells

Carol Costa Encarnação , Giselle Marianne Faria , Victor Aguiar Franco , Luiz Gabriel Xavier Botelho , João Alfredo Moraes , Mariana Renovato-Martins

Journal of Cancer Metastasis and Treatment ›› 2024, Vol. 10 : 28

PDF
Journal of Cancer Metastasis and Treatment ›› 2024, Vol. 10:28 DOI: 10.20517/2394-4722.2024.78
review-article

Interconnections within the tumor microenvironment: extracellular vesicles as critical players of metabolic reprogramming in tumor cells

Author information +
History +
PDF

Abstract

Metabolic reprogramming is an intrinsic characteristic of cancer, contributing to its establishment and progression, survival, high proliferation rates, and increased migratory and invasive potential; tumor cells establish an intimate relationship with the surrounding microenvironment, where sustained communication allows the stromal fraction of the tumor microenvironment (TME) to supply energetic substrates and facilitate the biosynthesis of macromolecules, thereby promoting tumor progression. In this context, extracellular vesicles (EVs) emerge as potential communication vehicles, carrying inside content reflecting the cellular environment of origin and thus modulating the phenotype of recipient cells. The potential of EVs as modulators in the TME has been highlighted and is now consensual; however, most available articles have focused on revealing the effect of EVs in modulating tumor phenotypes and signaling pathways in tumor cells. Regarding the metabolic modulation sustained by EVs, studies have demonstrated the role of cancer cells’ EVs as modulators of surrounding cells, like immune cells, fibroblasts, and adipocytes. Therefore, this review aims to: i. highlight the most recent studies evaluating the role of cellular vesicles released by those cells within the microenvironment in the metabolic reprogramming of cancer cells; ii. compile scientific evidence proposing how EVs could modulate the metabolic profile of tumor stem cells and lymphocytes, particularly given the lack of studies focused on such approaches; and iii. highlight possible effects of vesicles, as the metabolic modulation induced by these vesicles could have anticancer potential.

Keywords

Metabolism / cancer / extracellular vesicles / tumor microenvironment / and metabolic reprogramming

Cite this article

Download citation ▾
Carol Costa Encarnação, Giselle Marianne Faria, Victor Aguiar Franco, Luiz Gabriel Xavier Botelho, João Alfredo Moraes, Mariana Renovato-Martins. Interconnections within the tumor microenvironment: extracellular vesicles as critical players of metabolic reprogramming in tumor cells. Journal of Cancer Metastasis and Treatment, 2024, 10: 28 DOI:10.20517/2394-4722.2024.78

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanahan D.The hallmarks of cancer.Cell2000;100:57-70

[2]

Hanahan D.Hallmarks of cancer: the next generation.Cell2011;144:646-74

[3]

Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth.Cancer Cell2023;41:374-403

[4]

Hanahan D.Hallmarks of cancer: new dimensions.Cancer Discov2022;12:31-46

[5]

Dominiak A,Olejarz W.Communication in the cancer microenvironment as a target for therapeutic interventions.Cancers (Basel)2020;12:1232 PMCID:PMC7281160

[6]

Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles.Nat Rev Mol Cell Biol2022;23:369-82

[7]

Anderson NM,Kern JG.The emerging role and targetability of the TCA cycle in cancer metabolism.Protein Cell2018;9:216-37 PMCID:PMC5818369

[8]

Faubert B,DeBerardinis RJ.Metabolic reprogramming and cancer progression.Science2020;368:eaaw5473 PMCID:PMC7227780

[9]

Warburg O.The metabolism of carcinoma cells.J Cancer Res1925;9:148-63

[10]

Liberti MV.The warburg effect: how does it benefit cancer cells?.Trends Biochem Sci2016;41:211-8

[11]

Ma Y,Hawkridge AM.Fatty acid oxidation: an emerging facet of metabolic transformation in cancer.Cancer Lett2018;435:92-100 PMCID:PMC6240910

[12]

Moreno-Sánchez R,Saavedra E,Ralph SJ.Who controls the ATP supply in cancer cells?.Int J Biochem Cell Biol2014;50:10-23

[13]

Rodrigues MF,Pezzuto P,Amoêdo ND.Reciprocal modulation of histone deacetylase inhibitors sodium butyrate and trichostatin a on the energy metabolism of breast cancer cells.J Cell Biochem2015;116:797-808

[14]

Semenza GL.HIF-1: upstream and downstream of cancer metabolism.Curr Opin Genet Dev2010;20:51-6 PMCID:PMC2822127

[15]

Christofk HR,Harris MH.The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth.Nature2008;452:230-3

[16]

Bose S,Le A.Glucose metabolism in cancer: the warburg effect and beyond. In: Le A, editor. The heterogeneity of cancer metabolism. Cham: Springer International Publishing; 2021. pp. 3-15. PMCID:PMC9639450

[17]

Liu Y.The complexity of p53-mediated metabolic regulation in tumor suppression.Semin Cancer Biol2022;85:4-32 PMCID:PMC8473587

[18]

Rousset M,Fogh J. Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 1981;41:1165-70. Available from: https://aacrjournals.org/cancerres/article/41/3/1165/485476/Presence-of-Glycogen-and-Growth-related-Variations [Last accessed on 27 Sep 2024]

[19]

Cheng KW,Mitra S.Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress.EMBO Mol Med2012;4:125-41 PMCID:PMC3306554

[20]

Shen GM,Liu XL.Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia.FEBS Lett2010;584:4366-72

[21]

Zhu Q,Han S.Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo.Prostate2011;71:835-45

[22]

Khan MW,Ghosh M,Chakrabarti S.mTORC2 controls cancer cell survival by modulating gluconeogenesis.Cell Death Discov2015;1:15016 PMCID:PMC4979518

[23]

Li T,Jia L,Chen L.PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation.Protein Cell2019;10:583-94 PMCID:PMC6626593

[24]

Lunt SY.Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.Annu Rev Cell Dev Biol2011;27:441-64

[25]

Liu Y,Guo Y.An Overview: The diversified role of mitochondria in cancer metabolism.Int J Biol Sci2023;19:897-915 PMCID:PMC9910000

[26]

Martinez-Outschoorn UE,Pestell RG,Lisanti MP.Cancer metabolism: a therapeutic perspective.Nat Rev Clin Oncol2017;14:11-31

[27]

Ashton TM,Kunz-Schughart LA.Oxidative phosphorylation as an emerging target in cancer therapy.Clin Cancer Res2018;24:2482-90

[28]

Whitaker-Menezes D,Flomenberg N.Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.Cell Cycle2011;10:4047-64.

[29]

Chen JQ.Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells.Biochim Biophys Acta2012;1826:370-84

[30]

Pavlova NN.The emerging hallmarks of cancer metabolism.Cell Metab2016;23:27-47 PMCID:PMC4715268

[31]

Cairns RA,Mak TW.Regulation of cancer cell metabolism.Nat Rev Cancer2011;11:85-95

[32]

Laurenti G.Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer?.Biochem Soc Trans2016;44:1111-6

[33]

Bardella C,Tomlinson I.SDH mutations in cancer.Biochim Biophys Acta2011;1807:1432-43

[34]

Cascón A,López-Jiménez E.Molecular characterisation of a common SDHB deletion in paraganglioma patients.J Med Genet2008;45:233-8

[35]

Ricketts C,Killick P,Astuti D,Maher ER.Germline SDHB mutations and familial renal cell carcinoma.J Natl Cancer Inst2008;100:1260-2

[36]

Zantour B,Tissier F.A thyroid nodule revealing a paraganglioma in a patient with a new germline mutation in the succinate dehydrogenase B gene.Eur J Endocrinol2004;151:433-8

[37]

DeBerardinis RJ,Daikhin E.Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.Proc Natl Acad Sci U S A2007;104:19345-50 PMCID:PMC2148292

[38]

Umapathy NS,Martin PM.Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells.Invest Ophthalmol Vis Sci2008;49:5151-60 PMCID:PMC2586300

[39]

Xiao D,Yao K,Wu G.The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications.Amino Acids2016;48:2067-80

[40]

DeBerardinis RJ.Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer.Oncogene2010;29:313-24 PMCID:PMC2809806

[41]

Wu G,Yang S,Turner ND.Glutathione metabolism and its implications for health.J Nutr2004;134:489-92

[42]

Le A,Hamaker M.Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.Cell Metab2012;15:110-21 PMCID:PMC3345194

[43]

Sajnani K,Smith RA,Lam AK.Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.Biochimie2017;135:164-72

[44]

Icard P,Fournel L,Lincet H.ATP citrate lyase: a central metabolic enzyme in cancer.Cancer Lett2020;471:125-34

[45]

Zhang C,Huang G.Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression.Genes Dev2016;30:1956-70 PMCID:PMC5066239

[46]

Carracedo A,Pandolfi PP.Cancer metabolism: fatty acid oxidation in the limelight.Nat Rev Cancer2013;13:227-32 PMCID:PMC3766957

[47]

Camarda R,Kohnz RA.Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer.Nat Med2016;22:427-32 PMCID:PMC4892846

[48]

Wang T,Lee H.JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance.Cell Metab2018;27:136-150.e5 PMCID:PMC5777338

[49]

Moraes JA,Franco VA.Adipose tissue-derived extracellular vesicles and the tumor microenvironment: revisiting the hallmarks of cancer.Cancers (Basel)2021;13:3328 PMCID:PMC8268128

[50]

Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol2018;19:213-28

[51]

Zhao H,Baddour J.Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.Elife2016;5:e10250

[52]

Colombo M,Théry C.Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu Rev Cell Dev Biol2014;30:255-89

[53]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[54]

Lucchetti D,Colella F.Extracellular vesicles and cancer: a focus on metabolism, cytokines, and immunity.Cancers (Basel)2020;12:171 PMCID:PMC7016590

[55]

Peinado H,Lavotshkin S.Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012;18:883-91.

[56]

Pavlides S,Castello-Cros R.The reverse warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.Cell Cycle2009;8:3984-4001

[57]

Fridman ES,Gil Z.The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment.Cells2022;11:1433 PMCID:PMC9104192

[58]

Rai A,Chen M,Ji H.Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome.Proteomics2019;19:e1800148

[59]

Shu S,Allen CL.Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment.Sci Rep2018;8:12905 PMCID:PMC6110845

[60]

Yan W,Zhou W.Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells.Nat Cell Biol2018;20:597-609 PMCID:PMC5920728

[61]

Wu X,Xu S.Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling.Cancer Lett2020;478:93-106

[62]

Park JE,Tse SW.Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift.Oncogene2019;38:5158-73

[63]

Sagar G,Javeed N.Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue.Gut2016;65:1165-74 PMCID:PMC5323066

[64]

Czystowska-Kuzmicz M,Nowis D.Small extracellular vesicles containing arginase-1 suppress T-cellresponses and promote tumor growth in ovarian carcinoma.Nat Commun2019;10:3000 PMCID:PMC6611910

[65]

Zhou C,Yan R.Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment.Cell Death Differ2021;28:715-29 PMCID:PMC7862304

[66]

Mantovani A,Porta C,Sica A.Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 2006;25:315-22.

[67]

Cassetta L.A timeline of tumour-associated macrophage biology.Nat Rev Cancer2023;23:238-57

[68]

Yang C,Wang S.Elevated CD163+/CD68+ Ratio at Tumor Invasive Front is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer.Int J Biol Sci2019;15:984-98 PMCID:PMC6535793

[69]

Hu WM,Ning JZ.FAM171B stabilizes vimentin and enhances CCL2-mediated TAM infiltration to promote bladder cancer progression.J Exp Clin Cancer Res2023;42:290 PMCID:PMC10621219

[70]

Chen S,Hou Y.YY1 complex in M2 macrophage promotes prostate cancer progression by upregulating IL-6.J Immunother Cancer2023;11:e006020 PMCID:PMC10152059

[71]

Atanasov G,Aust G.TIE2-expressing monocytes and M2-polarized macrophages impact survival and correlate with angiogenesis in adenocarcinoma of the pancreas.Oncotarget2018;9:29715-26 PMCID:PMC6049857

[72]

Chen X,Yin J.Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling.Cell Commun Signal2022;20:92 PMCID:PMC9205034

[73]

Kuwada K,Yoshida R.The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer.J Exp Clin Cancer Res2018;37:307 PMCID:PMC6288926

[74]

Jeong H,Hong BJ.Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis.Cancer Res2019;79:795-806

[75]

Chen F,Yang L.Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells.Nat Cell Biol2019;21:498-510

[76]

Xu M,Weng J.Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway.J Exp Clin Cancer Res2022;41:253 PMCID:PMC9389814

[77]

Zhang K,Peng LJ,Liu LM.M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62.Biol Direct2023;18:1 PMCID:PMC9832623

[78]

Jin J,Choi YK.Targeting glutamine metabolism as a therapeutic strategy for cancer.Exp Mol Med2023;55:706-15 PMCID:PMC10167356

[79]

Demas DM,Fallah Y.Glutamine metabolism drives growth in advanced hormone receptor positive breast cancer.Front Oncol2019;9:686 PMCID:PMC6688514

[80]

Prasad P.Glutamine regulates ovarian cancer cell migration and invasion through ETS1.Heliyon2021;7:e07064 PMCID:PMC8180613

[81]

Chen W,Guan B.Tumour-associated macrophage-derived DOCK7-enriched extracellular vesicles drive tumour metastasis in colorectal cancer via the RAC1/ABCA1 axis.Clin Transl Med2024;14:e1591 PMCID:PMC10883245

[82]

Liu S,Pelissier Vatter FA.Breast adipose tissue-derived extracellular vesicles from obese women alter tumor cell metabolism.EMBO Rep2023;24:e57339

[83]

Zhang Q,Zhang H.Adipocyte-derived exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal cancer.Adv Sci (Weinh)2022;9:e2203357 PMCID:PMC9534973

[84]

Lazar I,Dauvillier S.Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer.Cancer Res2016;76:4051-7

[85]

Clement E,Attané C.Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells.EMBO J2020;39:e102525 PMCID:PMC6996584

[86]

Fontana F,Carollo E.Adipocyte-derived extracellular vesicles promote prostate cancer cell aggressiveness by enabling multiple phenotypic and metabolic changes.Cells2022;11:2388 PMCID:PMC9368412

[87]

Chen X.Turning foes to friends: targeting cancer-associated fibroblasts.Nat Rev Drug Discov2019;18:99-115

[88]

Sazeides C.Metabolic relationship between cancer-associated fibroblasts and cancer cells. In: Le A, editor. The heterogeneity of cancer metabolism. Cham: Springer International Publishing; 2018. pp. 149-65.

[89]

Li Z,Qin Z.Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming.Theranostics2021;11:8322-36 PMCID:PMC8343997

[90]

Liu Y,Zhan Y.Carcinoma associated fibroblasts small extracellular vesicles with low miR-7641 promotes breast cancer stemness and glycolysis by HIF-1α.Cell Death Discov2021;7:176 PMCID:PMC8266840

[91]

Li Y,Liu W.SNHG3 functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming.Appl Biochem Biotechnol2020;191:1084-99 PMCID:PMC7320061

[92]

Liu T,Fang P.Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma.J Hematol Oncol2022;15:141 PMCID:PMC9548164

[93]

Lin B,Li H,Cui L.Tumor-infiltrating lymphocytes: warriors fight against tumors powerfully.Biomed Pharmacother2020;132:110873

[94]

Wang S.Exosomes derived from immune cells: the new role of tumor immune microenvironment and tumor therapy.Int J Nanomedicine2022;17:6527-50 PMCID:PMC9790146

[95]

Neviani P,Murtadha M.Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms.Cancer Res2019;79:1151-64 PMCID:PMC6428417

[96]

Liu L,Bai R,Tian Z.MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation.Oncogenesis2016;5:e224 PMCID:PMC4945752

[97]

Dosil SG,Rodriguez-Galan A.Natural killer (NK) cell-derived extracellular-vesicle shuttled microRNAs control T cell responses.Elife2022;11 PMCID:PMC9366747

[98]

Hui L,Guo X.MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2.Biomed Pharmacother2018;103:1194-201

[99]

Guo W,Wang Z.MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer.Hepatology2015;62:1132-44

[100]

der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis.Nat Rev Cancer2020;20:218-32 PMCID:PMC7115982

[101]

Cocucci E,Meldolesi J.Shedding microvesicles: artefacts no more.Trends Cell Biol2009;19:43-51

[102]

Zhou WJ,Xie F.CD45RO-CD8+ T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis.Theranostics2021;11:5330-45 PMCID:PMC8039953

[103]

Xiao W,Chen K.MiR-765 functions as a tumour suppressor and eliminates lipids in clear cell renal cell carcinoma by downregulating PLP2.EBioMedicine2020;51:102622 PMCID:PMC6948168

[104]

Borst J,Bąbała N,Kastenmüller W.CD4+ T cell help in cancer immunology and immunotherapy.Nat Rev Immunol2018;18:635-47

[105]

Maibach F,Seyed Jafari SM,Schenk M.Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma.Front Immunol2020;11:2105 PMCID:PMC7511547

[106]

Shin S,Jung D.Novel antitumor therapeutic strategy using CD4+ T cell-derived extracellular vesicles.Biomaterials2022;289:121765

[107]

Bogusławska J,Alseekh S.MicroRNA-mediated metabolic reprograming in renal cancer.Cancers (Basel)2019;11:1825 PMCID:PMC6966432

[108]

Campos-Ferraz PL,das Neves W.Exploratory studies of the potential anti-cancer effects of creatine.Amino Acids2016;48:1993-2001

[109]

Zhang F,Yang Y.Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses.Immunity2019;50:738-750.e7

[110]

Chen S,Wu JD.CD73: an emerging checkpoint for cancer immunotherapy.Immunotherapy2019;11:983-97 PMCID:PMC6609898

[111]

Xia C,To KKW.CD39/CD73/A2AR pathway and cancer immunotherapy.Mol Cancer2023;22:44 PMCID:PMC9979453

[112]

Iser IC,Oliveira FD,Lenz G.The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer.Semin Cancer Biol2022;86:202-13

[113]

Tavakoli S,Shariati A.Mesenchymal stromal cells; a new horizon in regenerative medicine.J Cell Physiol2020;235:9185-210

[114]

Folmes CD,Nelson TJ.Metabolic plasticity in stem cell homeostasis and differentiation.Cell Stem Cell2012;11:596-606 PMCID:PMC3593051

[115]

Liu Y,Tsai AC,Ma T.Metabolic reconfiguration supports reacquisition of primitive phenotype in human mesenchymal stem cell aggregates.Stem Cells2017;35:398-410

[116]

Atashzar MR,Karami J.Cancer stem cells: a review from origin to therapeutic implications.J Cell Physiol2020;235:790-803

[117]

Zhu W,Li Y.Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo.Cancer Lett2012;315:28-37

[118]

Roccaro AM,Maiso P.BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression.J Clin Invest2013;123:1542-55 PMCID:PMC3613927

[119]

Ono M,Tominaga N.Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells.Sci Signal2014;7:ra63

[120]

Rezaeian A,Heidari Keshel S.The effect of mesenchymal stem cells-derived exosomes on the prostate, bladder, and renal cancer cell lines.Sci Rep2022;12:20924 PMCID:PMC9719468

[121]

Jahangiri B,Asadollahi E,Sadeghizadeh M.MSC-derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway.Int J Pharm2022;627:122214

[122]

Lee JK,Jung BK.Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells.PLoS One2013;8:e84256 PMCID:PMC3877259

[123]

Vallabhaneni KC,Abraham A.Mesenchymal stem/stromal cells under stress increase osteosarcoma migration and apoptosis resistance via extracellular vesicle mediated communication.PLoS One2016;11:e0166027 PMCID:PMC5094708

[124]

Ding Y,Zheng Z.Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p.Tissue Cell2021;73:101623

[125]

Vallabhaneni KC,Dhule S.Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites.Oncotarget2015;6:4953-67 PMCID:PMC4467126

[126]

Anderson JD,Graham CS.Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling.Stem Cells2016;34:601-13 PMCID:PMC5785927

[127]

Palacios-Ferrer JL,Gallardo-Gómez M.Metabolomic profile of cancer stem cell-derived exosomes from patients with malignant melanoma.Mol Oncol2021;15:407-28 PMCID:PMC7858120

[128]

Lokumcu T,Schneider M.Proteomic, metabolomic, and fatty acid profiling of small extracellular vesicles from glioblastoma stem-like cells and their role in tumor heterogeneity.ACS Nano2024;18:2500-19 PMCID:PMC10811755

[129]

Bonuccelli G,Grisendi G.Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells.Oncotarget2014;5:7575-88 PMCID:PMC4202145

[130]

Tang K,Ma J.Brief report: human mesenchymal stem-like cells facilitate floating tumorigenic cell growth via glutamine-ammonium cycle.Stem Cells2015;33:2877-84

[131]

Ni K,Xu H.miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism.Cancer Cell Int2019;19:219 PMCID:PMC6708160

[132]

Liu Z,Fei B,Ma T.miR‑21‑5p targets PDHA1 to regulate glycolysis and cancer progression in gastric cancer.Oncol Rep2018;40:2955-63

[133]

Dai Q,Zhou X.Increased miR-21a provides metabolic advantages through suppression of FBP1 expression in non-small cell lung cancer cells.Am J Cancer Res2017;7:2121-30 PMCID:PMC5714742

[134]

Gu ZW,Wang WJ,Di W.MiR-1180 from bone marrow-derived mesenchymal stem cells induces glycolysis and chemoresistance in ovarian cancer cells by upregulating the Wnt signaling pathway.J Zhejiang Univ Sci B2019;20:219-37 PMCID:PMC6421125

[135]

Luo T,Tan A.Mesenchymal stem cell-secreted exosome promotes chemoresistance in breast cancer via enhancing miR-21-5p-mediated S100A6 expression.Mol Ther Oncolytics2020;19:283-93 PMCID:PMC7689030

[136]

Giordo R,Husaini NA.microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: a narrative review.Noncoding RNA Res2024;9:831-52 PMCID:PMC10995982

[137]

Raynor A,Ross T.Saturated and mono-unsaturated lysophosphatidylcholine metabolism in tumour cells: a potential therapeutic target for preventing metastases.Lipids Health Dis2015;14:69 PMCID:PMC4499168

[138]

An J.Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells.J Microbiol2022;60:735-45

[139]

Alcayaga-Miranda F,Lopez-Verrilli A.Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species.Oncotarget2016;7:44462-77 PMCID:PMC5190111

[140]

Infantino V,Convertini P,Iacobazzi V.Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target.Int J Mol Sci2021;22:5703 PMCID:PMC8199012

[141]

Chen D,Yuan Y.miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion.PLoS Genet2014;10:e1004177 PMCID:PMC3937226

[142]

Deng L,Bai S.MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development.Cancer Res2014;74:6648-60 PMCID:PMC4370193

[143]

Pakravan K,Sadeghizadeh M.MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells.Cell Oncol (Dordr)2017;40:457-70

[144]

Bruno S,Deregibus MC,Tetta C.Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth.Stem Cells Dev2013;22:758-71

[145]

Lou G,Xia C.MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway.J Exp Clin Cancer Res2020;39:4 PMCID:PMC6941283

[146]

Zou Z,Li H.mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges.Cell Biosci2020;10:31 PMCID:PMC7063815

[147]

Gremke N,Dort A.mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability.Nat Commun2020;11:4684 PMCID:PMC7499183

[148]

Lin D,Liu R.iRGD-modified exosomes effectively deliver CPT1A siRNA to colon cancer cells, reversing oxaliplatin resistance by regulating fatty acid oxidation.Mol Oncol2021;15:3430-46

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/