Progression of bone-metastatic prostate cancer in a mouse model treated with a novel pan-class I GLUT inhibitor (DRB18)

Nathan K. Hoggard , Shiyu Yuan , Marlon R. Szczepaniak , Megan M. Turner , Noriko Kantake , Chunmin Lo , Zachary D. LaRussa , Jingwen Song , Nigel A. Daniels , Jonathan A. Young , John B. Echols , Blake E. III Hildreth , Stephen C. Bergmeier , Xiaozhuo Chen , Thomas J. Rosol

Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11 : 5

PDF
Journal of Cancer Metastasis and Treatment ›› 2025, Vol. 11:5 DOI: 10.20517/2394-4722.2024.105
review-article

Progression of bone-metastatic prostate cancer in a mouse model treated with a novel pan-class I GLUT inhibitor (DRB18)

Author information +
History +
PDF

Abstract

Aim: Bone-metastatic prostate cancer (PCa) is a debilitating disease with few therapeutic options once androgen independence and chemotherapeutic resistance develop. Advanced PCa has metabolic vulnerabilities involving glycolysis, which is mediated by class I glucose transporters (GLUTs1-4). We previously patented DRB18, a small molecule pan-class I GLUT inhibitor that successfully inhibited the growth of a human lung cancer xenograft in mice. The purpose of this study was to determine the sensitivity of advanced PCa to GLUT antagonism using DRB18.

Methods: Bioinformatics was performed on human and canine PCa datasets to determine the clinical expression of class I GLUTs. Glucose uptake and cell viability in response to DRB18 were measured in vitro. Tibias of athymic mice were inoculated with Ace-1 canine PCa cells and treated with DRB18. The combination of DRB18 with cytotoxic docetaxel was assessed in vitro.

Results: Expression of important class I GLUTs and glycolysis genes increased during PCa progression in men and dogs. DRB18 reduced cancer cell glucose uptake and cell viability in a dose-dependent manner. Half-maximal inhibitory concentrations (IC50) ranged from 20-30 µM. DRB18 did not prevent intratibial PCa growth in vivo and had toxic effects at higher concentrations. DRB18 and docetaxel combination therapy and gene expression data from publicly available human PCa samples indicated docetaxel treatment does not stimulate glucose-related metabolic pathways.

Conclusion: GLUT1 inhibition alone or with combination therapy may not be appropriate for bone-metastasis inhibition. The results contribute to evidence that suggests bone metastatic PCa is not glucose dependent.

Keywords

Prostate cancer / bone metastasis / glycolysis / glucose transporter / DRB18 / Ace-1 / dog / preclinical model

Cite this article

Download citation ▾
Nathan K. Hoggard, Shiyu Yuan, Marlon R. Szczepaniak, Megan M. Turner, Noriko Kantake, Chunmin Lo, Zachary D. LaRussa, Jingwen Song, Nigel A. Daniels, Jonathan A. Young, John B. Echols, Blake E. III Hildreth, Stephen C. Bergmeier, Xiaozhuo Chen, Thomas J. Rosol. Progression of bone-metastatic prostate cancer in a mouse model treated with a novel pan-class I GLUT inhibitor (DRB18). Journal of Cancer Metastasis and Treatment, 2025, 11: 5 DOI:10.20517/2394-4722.2024.105

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rawla P.Epidemiology of prostate cancer.World J Oncol2019;10:63-89 PMCID:PMC6497009

[2]

Siegel RL,Jemal A.Cancer statistics, 2024.CA Cancer J Clin2024;74:12-49

[3]

Bubendorf L,Wagner U.Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients.Hum Pathol2000;31:578-83

[4]

Sandhu S,Chiong E.Prostate cancer.Lancet2021;398:1075-90

[5]

Pippione AC,Pors K,Lolli ML.Androgen-AR axis in primary and metastatic prostate cancer: chasing steroidogenic enzymes for therapeutic intervention.J Cancer Metastasis Treat2017;3:328

[6]

Blatt EB.Molecular mechanisms of enzalutamide resistance in prostate cancer.Cancer Drug Resist2019;2:189-97 PMCID:PMC8992629

[7]

Sekino Y.Molecular mechanisms of docetaxel resistance in prostate cancer.Cancer Drug Resist2020;3:676-85 PMCID:PMC8992564

[8]

Warburg O,Posener K.Versuche an überlebendem carcinomgewebe.Klin Wochenschr1924;3:1062-4

[9]

Warburg O,Negelein E.The metabolism of tumors in the body.J Gen Physiol1927;8:519-30 PMCID:PMC2140820

[10]

Pfeiffer T,Bonhoeffer S.Cooperation and competition in the evolution of ATP-producing pathways.Science2001;292:504-7

[11]

Pliszka M.Glucose transporters as a target for anticancer therapy.Cancers2021;13:4184 PMCID:PMC8394807

[12]

Pragallapati S.Glucose transporter 1 in health and disease.J Oral Maxillofac Pathol2019;23:443-9 PMCID:PMC6948067

[13]

Younes M,Somoano JR,Lechago J.Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers.Cancer Res1996;56:1164-7. Available from:

[14]

Szablewski L.Glucose transporters as markers of diagnosis and prognosis in cancer diseases.Oncol Rev2022;16:561 PMCID:PMC8941341

[15]

Wang T,Hu X,Chen GX.Current understanding of glucose transporter 4 expression and functional mechanisms.World J Biol Chem2020;11:76-98 PMCID:PMC7672939

[16]

Macheda ML,Best JD.Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.J Cell Physiol2005;202:654-62

[17]

Zheng J.Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review).Oncol Lett2012;4:1151-7 PMCID:PMC3506713

[18]

Chen CL,Kung HJ.Targeting mitochondrial OXPHOS and their regulatory signals in prostate cancers.Int J Mol Sci2021;22:13435 PMCID:PMC8708687

[19]

Butler LM,Swinnen JV.Androgen control of lipid metabolism in prostate cancer: novel insights and future applications.Endocr Relat Cancer2016;23:R219-27

[20]

Effert P,Tamimi Y,Jakse G.Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma.Anticancer Res2004;24:3057-63Available from: https://ar.iiarjournals.org/content/24/5A/3057/tab. [Last accessed on 24 Jan 2025]

[21]

Oyama N,Suzuki Y.Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer.Mol Imaging Biol2002;4:99-104

[22]

Parmar K,Vergilio JA,Down JD.Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia.Proc Natl Acad Sci U S A2007;104:5431-6 PMCID:PMC1838452

[23]

Diedrich JD,Herroon MK,Hüttemann M.Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation.Oncotarget2016;7:64854-77 PMCID:PMC5323121

[24]

Spencer JA,Roussakis E.Direct measurement of local oxygen concentration in the bone marrow of live animals.Nature2014;508:269-73 PMCID:PMC3984353

[25]

Vaupel P,Mayer A.Detection and characterization of tumor hypoxia using pO2 histography.Antioxid Redox Signal2007;9:1221-35

[26]

Zhang Y,Huang Z.Targeting glucose metabolism enzymes in cancer treatment: current and emerging strategies.Cancers2022;14:4568 PMCID:PMC9559313

[27]

Temre MK,Singh SM.An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: promising potential of new pan-GLUT inhibitors.Front Pharmacol2022;13:1035510 PMCID:PMC9663470

[28]

Chen X. Compositions and methods for glucose transport inhibition. US11072576B2, 2021. Available from: https://patents.google.com/patent/US11072576B2/en. [Last accessed on 10 Feb 2025]

[29]

Shriwas P,Li Y.A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism.Cancer Metab2021;9:14 PMCID:PMC8004435

[30]

Liu Y,Cao Y,Bergmeier S.Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.Cancer Lett2010;298:176-85

[31]

Shi Q,Liu Y.Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal cathepsin B to promote cancer metastasis and chemoresistance.Cancer Cell2022;40:1207-1222.e10

[32]

Jakobsson AW,Guo J.Iron chelator VLX600 inhibits mitochondrial respiration and promotes sensitization of neuroblastoma cells in nutrition-restricted conditions.Cancers2022;14:3225 PMCID:PMC9264775

[33]

Wang J,Wang B.GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers.Cancer Lett2020;485:45-55

[34]

LeRoy BE,Nadella MV.New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft.Prostate2006;66:1213-22

[35]

Thudi NK,Martin CK.Development of a brain metastatic canine prostate cancer cell line.Prostate2011;71:1251-63 PMCID:PMC3139788

[36]

Simmons JK,Hildreth BE 3rd.Canine prostate cancer cell line (probasco) produces osteoblastic metastases in vivo.Prostate2014;74:1251-65 PMCID:PMC4216720

[37]

Elshafae SM,Alasonyalilar-Demirer A.Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis.Prostate2020;80:698-714 PMCID:PMC7291846

[38]

Simmons JK,Supsavhad W.Animal models of bone metastasis.Vet Pathol2015;52:827-41 PMCID:PMC4545712

[39]

Chlenski A,Ketels KV,Oyasu R.Androgen receptor expression in androgen-independent prostate cancer cell lines.Prostate2001;47:66-75

[40]

Yun SJ,Kim J.Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer.Oncotarget2017;8:114845-55 PMCID:PMC5777737

[41]

Kumar A,Morrissey C.Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer.Nat Med2016;22:369-78 PMCID:PMC5045679

[42]

Thiemeyer H,Schille JT.An RNA-seq-based framework for characterizing canine prostate cancer and prioritizing clinically relevant biomarker candidate genes.Int J Mol Sci2021;22:11481 PMCID:PMC8584104

[43]

Robinson MD,Smyth GK.edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics2010;26:139-40 PMCID:PMC2796818

[44]

Ritchie ME,Wu D.limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res2015;43:e47 PMCID:PMC4402510

[45]

Ye J,Zaretskaya I,Rozen S.Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.BMC Bioinformatics2012;13:134 PMCID:PMC3412702

[46]

Roberts DA,Zhang W.Isosteres of ester derived glucose uptake inhibitors.Bioorg Med Chem Lett2020;30:127406

[47]

Haider M,Coleman I.Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases.Clin Exp Metastasis2016;33:239-48 PMCID:PMC4777655

[48]

Suwabe Y,Namba S.Involvement of GLUT1 and GLUT3 in the growth of canine melanoma cells.PLoS One2021;16:e0243859 PMCID:PMC7861381

[49]

Liu Y,Zhang W.A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo.Mol Cancer Ther2012;11:1672-82

[50]

Chandler JD,Slavin JL,Rogers S.Expression and localization of GLUT1 and GLUT12 in prostate carcinoma.Cancer2003;97:2035-42

[51]

Reinicke K,Cisterna P,Nualart F.Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue.J Cell Biochem2012;113:553-62

[52]

Mossa F,Sumankalai R.Subtype and site specific-induced metabolic vulnerabilities in prostate cancer.Mol Cancer Res2023;21:51-61

[53]

Whitburn J,Morris EV.Metabolic profiling of prostate cancer in skeletal microenvironments identifies G6PD as a key mediator of growth and survival.Sci Adv2022;8:eabf9096 PMCID:PMC8880772

[54]

Jiang H,Deng Y.Identification of prostate cancer bone metastasis related genes and potential therapy targets by bioinformatics and in vitro experiments.J Cell Mol Med2024;28:e18511

[55]

Pienta KJ.Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer.Semin Oncol2001;28:3-7

[56]

Ippolito L,Cavallini L.Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells.Oncotarget2016;7:61890-904 PMCID:PMC5308698

[57]

Catanzaro D,Cocetta V.Silybin counteracts doxorubicin resistance by inhibiting GLUT1 expression.Fitoterapia2018;124:42-8

[58]

Ginsberg HN,Hernandez-Ono A.Regulation of plasma triglycerides in insulin resistance and diabetes.Arch Med Res2005;36:232-40

[59]

Feingold KR.Lipid and lipoprotein metabolism.Endocrinol Metab Clin North Am2022;51:437-58

[60]

Cameron S,Hawley JR.Chronic hypoxia favours adoption to a castration-resistant cell state in prostate cancer.Oncogene2023;42:1693-703 PMCID:PMC10202808

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/