PDF
Abstract
The development of uterine cervical cancer is primarily attributed to infection by high-risk human papillomaviruses (HR-HPVs). E5, E6 and E7, the three early oncoproteins of HR-HPVs, have been implicated in initiation and progression of cervical cancer. The intricate molecular mechanisms that orchestrate aberrant cellular transformations to establish carcinoma of the cervical epithelium following viral infections are poorly understood. Here, we discuss how deregulation of three major cell fate regulatory pathways, Hedgehog, Wnt and Notch, and cell survival strategies involving EGFR signaling and G1/S checkpoint contribute towards cervical cancer development and progression. Further exploration of protein interaction database has revealed several genes that are involved in cervical cancer initiation and progression, and the two crucial "driver” genes, MYC and CTNNB1 (β-catenin), have been identified as major players in protein-protein interaction network. GSK3β emerged as the key mediator of crosstalk between Hedgehog, Wnt and Notch signaling pathways. GSK3β regulates cytoplasmic stabilization and nuclear translocation of β-catenin, which further impacts the expression of MYC, critical for cell cycle progression. Collectively, our analyses suggest that combinatorial therapeutic targeting of these proteins may be more effective in blocking cervical cancer initiation and progression.
Keywords
Uterine cervical cancer
/
hedgehog
/
Notch
/
Wnt
/
G1/S checkpoint
/
GSK3β
/
β-catenin
/
MYC
Cite this article
Download citation ▾
Sudip Samadder, Palash Paul, Arpan De.
Crosstalk between cell fate and survival pathways during uterine cervical carcinoma progression: a molecular and clinical perspective.
Journal of Cancer Metastasis and Treatment, 2023, 9: 30 DOI:10.20517/2394-4722.2023.21
| [1] |
Sung H,Siegel RL.Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49
|
| [2] |
Arbyn M,Bruni L.Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis.Lancet Glob Health2020;8:e191-203 PMCID:PMC7025157
|
| [3] |
Cogliano VJ,Straif K.Preventable exposures associated with human cancers.J Natl Cancer Inst2011;103:1827-39 PMCID:PMC3243677
|
| [4] |
Castanheira CP,Nunes RAL,Termini L.Microbiome and cervical cancer.Pathobiology2021;88:187-97
|
| [5] |
Vogelstein B,Velculescu VE,Diaz Jr LA.Cancer genome landscapes.Science2013;339:1546-58 PMCID:PMC3749880
|
| [6] |
Perrimon N,Shilo BZ.Signaling mechanisms controlling cell fate and embryonic patterning.Cold Spring Harb Perspect Biol2012;4:a005975 PMCID:PMC3405863
|
| [7] |
Feinberg AP,Göndör A.Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.Nat Rev Genet2016;17:284-99 PMCID:PMC4888057
|
| [8] |
Doorbar J,Aiyenuro A.Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone.Curr Opin Virol2021;51:96-105
|
| [9] |
Dyke JG.The emergence of environmental homeostasis in complex ecosystems.PLoS Comput Biol2013;9:e1003050 PMCID:PMC3656095
|
| [10] |
Basanta D.Homeostasis back and forth: an ecoevolutionary perspective of cancer.Cold Spring Harb Perspect Med2017;7:a028332 PMCID:PMC5580509
|
| [11] |
Francis N.Cancer as a homeostatic challenge: the role of the hypothalamus.Trends Neurosci2021;44:903-14 PMCID:PMC9901368
|
| [12] |
Slominski RM,Chen JY.How cancer hijacks the body’s homeostasis through the neuroendocrine system.Trends Neurosci2023;46:263-75 PMCID:PMC10038913
|
| [13] |
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins.Virology2013;445:115-37 PMCID:PMC3783570
|
| [14] |
Di Fiore R,Drago-Ferrante R.Cancer stem cells and their possible implications in cervical cancer: a short review.Int J Mol Sci2022;23:5167 PMCID:PMC9106065
|
| [15] |
Kowatsch C,Kinnebrew M,Siebold C.Structures of vertebrate Patched and Smoothened reveal intimate links between cholesterol and Hedgehog signalling.Curr Opin Struct Biol2019;57:204-14 PMCID:PMC6744280
|
| [16] |
Kotulak-Chrząszcz A,Wierzbicki PM.Sonic hedgehog signaling pathway in gynecological and genitourinary cancer (review).Int J Mol Med2021;47:106 PMCID:PMC8057295
|
| [17] |
Hui CC.Gli proteins in development and disease.Annu Rev Cell Dev Biol2011;27:513-37
|
| [18] |
Niewiadomski P,Markiewicz Ł,Baran B.Gli proteins: regulation in development and cancer.Cells2019;8:147 PMCID:PMC6406693
|
| [19] |
Garcia N,Al-Hendy A.The role of hedgehog pathway in female cancers.J Cancer Sci Clin Ther2020;4:487-98 PMCID:PMC7654982
|
| [20] |
Hanna A.Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment.Mol Cancer2016;15:24 PMCID:PMC4797362
|
| [21] |
Chaudary N,Hedley D.Hedgehog pathway signaling in cervical carcinoma and outcome after chemoradiation.Cancer2012;118:3105-15
|
| [22] |
Samarzija I.Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration.Biochem Biophys Res Commun2012;425:64-9
|
| [23] |
Chakraborty C,Mukherjee N.Inactivation of PTCH1 is associated with the development of cervical carcinoma: clinical and prognostic implication.Tumour Biol2015;36:1143-54
|
| [24] |
Ojesina AI,Freeman SS.Landscape of genomic alterations in cervical carcinomas.Nature2014;506:371-5
|
| [25] |
Vishnoi K,Tyagi A.Cross-talk between human papillomavirus oncoproteins and hedgehog signaling synergistically promotes stemness in cervical cancer cells.Sci Rep2016;6:34377 PMCID:PMC5039669
|
| [26] |
Deng Y,Xiao J.Inhibition of the transcription factor ZNF281 by SUFU to suppress tumor cell migration.Cell Death Differ2023;30:702-15 PMCID:PMC9984498
|
| [27] |
Rodrigues C,Sachithanandan SP.Notch signalling in cervical cancer.Exp Cell Res2019;385:111682
|
| [28] |
Bray SJ.Notch signalling: a simple pathway becomes complex.Nat Rev Mol Cell Biol2006;7:678-89
|
| [29] |
Borggrefe T.The Notch signaling pathway: transcriptional regulation at Notch target genes.Cell Mol Life Sci2009;66:1631-46
|
| [30] |
Andersen P,Shenje LT.Non-canonical Notch signaling: emerging role and mechanism.Trends Cell Biol2012;22:257-65 PMCID:PMC3348455
|
| [31] |
Ayaz F.Non-canonical notch signaling in cancer and immunity.Front Oncol2014;4:345 PMCID:PMC4255497
|
| [32] |
Fuchs E.Finding one’s niche in the skin.Cell Stem Cell2009;4:499-502 PMCID:PMC2716125
|
| [33] |
Lathion S,Beard P.Notch1 can contribute to viral-induced transformation of primary human keratinocytes.Cancer Res2003;63:8687-94
|
| [34] |
Yousif NG,Yousif MG,Al-Baghdadi JJ.Notch1 ligand signaling pathway activated in cervical cancer: poor prognosis with high-level JAG1/Notch1.Arch Gynecol Obstet2015;292:899-904
|
| [35] |
Chen Y,Lin J.DARS-AS1 accelerates the proliferation of cervical cancer cells via miR-628-5p/JAG1 axis to activate Notch pathway.Cancer Cell Int2020;20:535 PMCID:PMC7640441
|
| [36] |
Yu L.Abnormal activation of notch 1 signaling causes apoptosis resistance in cervical cancer.Int J Clin Exp Pathol2022;15:11-9 PMCID:PMC8822208
|
| [37] |
Rangarajan A,Selvarajah S,Sarin A.Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt.Virology2001;286:23-30
|
| [38] |
Veeraraghavalu K,Srivastava S,Syal R.Complementation of human papillomavirus type 16 E6 and E7 by Jagged1-specific Notch1-phosphatidylinositol 3-kinase signaling involves pleiotropic oncogenic functions independent of CBF1;Su(H);Lag-1 activation.J Virol2005;79:7889-98 PMCID:PMC1143639
|
| [39] |
Liu J,Chen H,Zhou C.Expression of differentiation associated protein Hes1 and Hes5 in cervical squamous carcinoma and its precursors.Int J Gynecol Cancer2007;17:1293-9
|
| [40] |
Srivastava S,Nagarajan S,Mukherjee G.Notch1 regulates the functional contribution of RhoC to cervical carcinoma progression.Br J Cancer2010;102:196-205 PMCID:PMC2813755
|
| [41] |
Vázquez-Ulloa E,Prada D.Loss of nuclear NOTCH1, but not its negative regulator NUMB, is an independent predictor of cervical malignancy.Oncotarget2018;9:18916-28 PMCID:PMC5922366
|
| [42] |
Sun L,Sun GC.Notch Signaling activation in cervical cancer cells induces cell growth arrest with the involvement of the nuclear receptor NR4A2.J Cancer2016;7:1388-95 PMCID:PMC4964122
|
| [43] |
Kadian LK,Ahuja P.Aberrant promoter methylation of NOTCH1 and NOTCH3 and its association with cervical cancer risk factors in North Indian population.Am J Transl Res2020;12:2814-26 PMCID:PMC7344087
|
| [44] |
Yang M,Li X.Wnt signaling in cervical cancer?.J Cancer2018;9:1277-86 PMCID:PMC5907676
|
| [45] |
Corda G.Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage.Oncogenesis2017;6:e364 PMCID:PMC5541719
|
| [46] |
Zhan T,Boutros M.Wnt signaling in cancer.Oncogene2017;36:1461-73 PMCID:PMC5357762
|
| [47] |
McMellen A,Corr BR,Moroney MR.Wnt signaling in gynecologic malignancies.Int J Mol Sci2020;21:4272 PMCID:PMC7348953
|
| [48] |
Perez-Plasencia C,Alatorre-Tavera B.Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway.Int Arch Med2008;1:10 PMCID:PMC2491599
|
| [49] |
Zhang Y,Zhao Q,Huang X.Nuclear localizaiton of β-catenin is associated with poor survival and chemo-/radioresistance in human cervical squamous cell cancer.Int J Clin Exp Pathol2014;7:3908-17 PMCID:PMC4129002
|
| [50] |
Chung MT,Yan MD.Promoter methylation of SFRPs gene family in cervical cancer.Gynecol Oncol2009;112:301-6
|
| [51] |
Lin YW,Lai HC.Methylation analysis of SFRP genes family in cervical adenocarcinoma.J Cancer Res Clin Oncol2009;135:1665-74
|
| [52] |
Chung MT,Sytwu HK.SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway.Gynecol Oncol2009;112:646-53
|
| [53] |
Ying Y.Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers.Epigenetics2009;4:307-12
|
| [54] |
Wang B,Wei L.Expression of dickkopf-1 and twist2 in cervical squamous cell carcinoma and their correlation with vasculogenic mimicry.J Healthc Eng2022;2022:9288476 PMCID:PMC8942658
|
| [55] |
Koike J,Miwa T,Terada M.Molecular cloning of Frizzled-10, a novel member of the Frizzled gene family.Biochem Biophys Res Commun1999;262:39-43
|
| [56] |
Kirikoshi H,Katoh M.WNT10A and WNT6, clustered in human chromosome 2q35 region with head-to-tail manner, are strongly coexpressed in SW480 cells.Biochem Biophys Res Commun2001;283:798-805
|
| [57] |
Kirikoshi H,Katoh M.Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNgamma and up-regulation of WNT14B by beta-estradiol.Int J Oncol2001;19:1221-5
|
| [58] |
Kirikoshi H.Expression and regulation of WNT10B in human cancer: up-regulation of WNT10B in MCF-7 cells by beta-estradiol and down-regulation of WNT10B in NT2 cells by retinoic acid.Int J Mol Med2002;10:507-11
|
| [59] |
Okino K,Hatta M.Up-regulation and overproduction of DVL-1, the human counterpart of the Drosophila dishevelled gene, in cervical squamous cell carcinoma.Oncol Rep2003;10:1219-23
|
| [60] |
Chakraborty C,Roychowdhury A.Activation of Wnt-β-catenin pathway in basal-parabasal layers of normal cervical epithelium comparable during development of uterine cervical carcinoma.Mol Cell Biochem2018;443:121-30
|
| [61] |
Liu XF,Zheng PS.DAX1 promotes cervical cancer cell growth and tumorigenicity through activation of Wnt/β-catenin pathway via GSK3β.Cell Death Dis2018;9:339 PMCID:PMC5832878
|
| [62] |
The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer.Nature2017;543:378-84 PMCID:PMC5354998
|
| [63] |
Feng Q,Ma HM,Zheng PS.LGR6 activates the Wnt/β-catenin signaling pathway and forms a β-catenin/TCF7L2/LGR6 feedback loop in LGR6(high) cervical cancer stem cells.Oncogene2021;40:6103-14 PMCID:PMC8530990
|
| [64] |
Zhou L,Zhang D.OTX1 promotes tumorigenesis and progression of cervical cancer by regulating the Wnt signaling pathway.Oncol Rep2022;48:204 PMCID:PMC9551656
|
| [65] |
Kastan MB.Cell-cycle checkpoints and cancer.Nature2004;432:316-23
|
| [66] |
zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application.Nat Rev Cancer2002;2:342-50
|
| [67] |
Pal A.Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy.Front Microbiol2019;10:3116 PMCID:PMC6985034
|
| [68] |
Mitra S,Bhattacharya N.RBSP3 is frequently altered in premalignant cervical lesions: clinical and prognostic significance.Genes Chromosomes Cancer2010;49:155-70
|
| [69] |
Sharp TV,Bourboulia D.LIM domains-containing protein 1 (LIMD1), a tumor suppressor encoded at chromosome 3p21.3, binds pRB and represses E2F-driven transcription.Proc Natl Acad Sci USA2004;101:16531-6 PMCID:PMC534532
|
| [70] |
Chakraborty C,Roychowdhury A.Deregulation of LIMD1-VHL-HIF-1α-VEGF pathway is associated with different stages of cervical cancer.Bio-Chem J2018;475:1793-806
|
| [71] |
Kersemaekers AM,Kenter GG.Oncogene alterations in carcinomas of the uterine cervix: overexpression of the epidermal growth factor receptor is associated with poor prognosis.Clin Cancer Res1999;5:577-86
|
| [72] |
Shen L,Wang X.EGFR and HER2 expression in primary cervical cancers and corresponding lymph node metastases: implications for targeted radiotherapy.BMC Cancer2008;8:232 PMCID:PMC2519090
|
| [73] |
Iida K,Rahman MT.EGFR gene amplification is related to adverse clinical outcomes in cervical squamous cell carcinoma, making the EGFR pathway a novel therapeutic target.Br J Cancer2011;105:420-7 PMCID:PMC3172895
|
| [74] |
Arias-Pulido H,Chavez A.Absence of epidermal growth factor receptor mutations in cervical cancer.Int J Gynecol Cancer2008;18:749-54
|
| [75] |
Spangle JM.The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species.PLoS Pathog2013;9:e1003237 PMCID:PMC3597533
|
| [76] |
Venuti A,Nasir L.Papillomavirus E5: the smallest oncoprotein with many functions.Mol Cancer2011;10:140 PMCID:PMC3248866
|
| [77] |
Liao S,Zhang W.Human papillomavirus 16/18 E5 promotes cervical cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo.Oncol Rep2013;29:95-102
|
| [78] |
Morgan EL,Patterson MR.E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer.Cell Death Differ2021;28:1669-87 PMCID:PMC8166842
|
| [79] |
Skoda AM,Karin V,Vranic S.The role of the Hedgehog signaling pathway in cancer: a comprehensive review.Bosn J Basic Med Sci2018;18:8-20 PMCID:PMC5826678
|
| [80] |
Niyaz M,Mudassar S.Hedgehog signaling: an achilles’ heel in cancer.Transl Oncol2019;12:1334-44 PMCID:PMC6664200
|
| [81] |
Zhou B,Long Y.Notch signaling pathway: architecture, disease, and therapeutics.Signal Transduct Target Ther2022;7:95 PMCID:PMC8948217
|
| [82] |
Castel D,Bartels SJ,Tajbakhsh S.Dynamic binding of RBPJ is determined by Notch signaling status.Genes Dev2013;27:1059-71 PMCID:PMC3656323
|
| [83] |
Katoh M.Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells.Int J Mol Med2006;17:681-5
|
| [84] |
Lecarpentier Y,Hébert JL.Multiple targets of the canonical WNT/β-catenin signaling in cancers.Front Oncol2019;9:1248 PMCID:PMC6876670
|
| [85] |
Song L,Liu WP.Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy.Cancer Biol Ther2015;16:1-7 PMCID:PMC4622601
|
| [86] |
Heilmann AM.Phosphorylation puts the pRb tumor suppressor into shape.Genes Dev2012;26:1128-30 PMCID:PMC3371403
|
| [87] |
Dyson NJ.RB1: a prototype tumor suppressor and an enigma.Genes Dev2016;30:1492-502 PMCID:PMC4949322
|
| [88] |
Szklarczyk D,Lyon D.STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res2019;47:D607-13 PMCID:PMC6323986
|
| [89] |
Shannon P,Ozier O.Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res2003;13:2498-504 PMCID:PMC403769
|
| [90] |
Mishra S.CSNK1A1 and Gli2 as novel targets identified through an integrative analysis of gene expression data, protein-protein interaction and pathways networks in glioblastoma tumors: can these two be antagonistic proteins?.Cancer Inform2014;13:93-108 PMCID:PMC4213195
|
| [91] |
Zhang X,Yang N.In silico methods for identification of potential therapeutic targets.Interdiscip Sci2022;14:285-310 PMCID:PMC8616973
|
| [92] |
Cohen P.The renaissance of GSK3.Nat Rev Mol Cell Biol2001;2:769-76
|
| [93] |
Valenta T,Basler K.The many faces and functions of β-catenin.EMBO J2012;31:2714-36 PMCID:PMC3380220
|
| [94] |
Niehrs C.Mitotic and mitogenic wnt signalling.EMBO J2012;31:2705-13 PMCID:PMC3380213
|
| [95] |
Paul I,Chatterjee A.Current understanding on EGFR and Wnt/β-catenin signaling in glioma and their possible crosstalk.Genes Cancer2013;4:427-46 PMCID:PMC3877660
|
| [96] |
Zeisberg M.Biomarkers for epithelial-mesenchymal transitions.J Clin Invest2009;119:1429-37 PMCID:PMC2689132
|
| [97] |
Klinakis A,Politi K,Artavanis-Tsakonas S.Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice.Proc Natl Acad Sci USA2006;103:9262-7 PMCID:PMC1570422
|
| [98] |
Dang CV,Zeller KI,Osthus RC.The c-Myc target gene network.Semin Cancer Biol2006;16:253-64
|
| [99] |
Llombart V.Therapeutic targeting of "undruggable” MYC.EBioMedicine2022;75:103756 PMCID:PMC8713111
|
| [100] |
Adhikary S.Transcriptional regulation and transformation by Myc proteins.Nat Rev Mol Cell Biol2005;6:635-45
|
| [101] |
Bretones G,León J.Myc and cell cycle control.Biochim Biophys Acta2015;1849:506-16
|
| [102] |
García-Gutiérrez L,León J.MYC oncogene contributions to release of cell cycle brakes.Genes2019;10:244 PMCID:PMC6470592
|
| [103] |
Malumbres M.Mammalian cyclin-dependent kinases.Trends Biochem Sci2005;30:630-41
|
| [104] |
Malumbres M.Cyclin-dependent kinases.Genome Biol2014;15:122 PMCID:PMC4097832
|
| [105] |
Sahin I,De Souza A.Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses.Cancer Biol Ther2019;20:1047-56 PMCID:PMC6606036
|
| [106] |
Sears R,Haura E,Tamai K.Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability.Genes Dev2000;14:2501-14 PMCID:PMC316970
|
| [107] |
Robertson H,Sutherland C.A partnership with the proteasome; the destructive nature of GSK3.Bio-Chem Pharmacol2018;147:77-92 PMCID:PMC5954166
|
| [108] |
Hanahan D.The hallmarks of cancer.Cell2000;100:57-70
|
| [109] |
Takahashi K.A decade of transcription factor-mediated reprogramming to pluripotency.Nat Rev Mol Cell Biol2016;17:183-93
|
| [110] |
Shamsian A,Norouzy A,Ghahremani MH.Cancer cells as a new source of induced pluripotent stem cells.Stem Cell Res Ther2022;13:459 PMCID:PMC9446809
|
| [111] |
Nath N,Nagini S.Glycogen synthase kinase-3β inactivation promotes cervical cancer progression, invasion, and drug resistance.Biotechnol Appl Biochem2022;69:1929-41
|
| [112] |
Shinohara A,Wan X.Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix.Gynecol Oncol2001;82:450-5
|
| [113] |
de Putte G, Kristensen GB, Baekelandt M, Lie AK, Holm R. E-cadherin and catenins in early squamous cervical carcinoma.Gynecol Oncol2004;94:521-7
|
| [114] |
Wang B,Liu L.β-Catenin: oncogenic role and therapeutic target in cervical cancer.Biol Res2020;53:33 PMCID:PMC7405349
|
| [115] |
Wang Q,Song R.NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression.Cell Death Dis2018;9:668 PMCID:PMC5986762
|
| [116] |
Chen Q,Zheng PS.LGR5 promotes the proliferation and tumor formation of cervical cancer cells through the Wnt/β-catenin signaling pathway.Oncotarget2014;5:9092-105 PMCID:PMC4253421
|
| [117] |
Hwang SY,Byun S.Direct Targeting of β-Catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling.Cell Rep2016;16:28-36 PMCID:PMC4957947
|
| [118] |
Zhang Y.Targeting the Wnt/β-catenin signaling pathway in cancer.J Hematol Oncol2020;13:165 PMCID:PMC7716495
|
| [119] |
Lepourcelet M,France DS.Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex.Cancer Cell2004;5:91-102
|
| [120] |
Dihlmann S,von Knebel Doeberitz M.The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling.Oncogene2001;20:645-53
|
| [121] |
Fischer MM,Yeung VP.WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death.Sci Adv2017;3:e1700090 PMCID:PMC5479655
|
| [122] |
Abba MC,Dulout FN.The c-myc activation in cervical carcinomas and HPV 16 infections.Mutat Res2004;557:151-8
|
| [123] |
Gimenes F,de Abreu AL,Consolaro ME.Simultaneous detection of human papillomavirus integration and c-MYC gene amplification in cervical lesions: an emerging marker for the risk to progression.Arch Gynecol Obstet2016;293:857-63
|
| [124] |
Li T,Bian D,Huang X.Detection of hTERC and c-MYC genes in cervical epithelial exfoliated cells for cervical cancer screening.Int J Mol Med2014;33:1289-97
|
| [125] |
Dhanasekaran R,Mahauad-Fernandez WD,Gouw AM.The MYC oncogene - the grand orchestrator of cancer growth and immune evasion.Nat Rev Clin Oncol2022;19:23-36 PMCID:PMC9083341
|
| [126] |
Madden SK,Gerhardt M,Mason JM.Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc.Mol Cancer2021;20:3 PMCID:PMC7780693
|
| [127] |
Wang C,Yin J.Alternative approaches to target Myc for cancer treatment.Signal Transduct Target Ther2021;6:117 PMCID:PMC7946937
|