Mechanical force-mediated interactions between cancer cells and fibroblasts and their role in the progression of hepatocellular carcinoma

Zheng Peng , Yanling Ding , Hongyu Zhang , Xia Meng , Yiyong Huang , Pengfei Zhang , Zepeng Li , Xiaoling Zhou

Journal of Cancer Metastasis and Treatment ›› 2024, Vol. 10 : 4

PDF
Journal of Cancer Metastasis and Treatment ›› 2024, Vol. 10:4 DOI: 10.20517/2394-4722.2023.137
review-article

Mechanical force-mediated interactions between cancer cells and fibroblasts and their role in the progression of hepatocellular carcinoma

Author information +
History +
PDF

Abstract

Mechanical forces play a key role in the initiation and progression of cancer. Intercellular interactions between fibroblasts and cancer cells contribute a large portion of the mechanical forces in tumor tissue. Hence, further investigation of the mechanical force-mediated intercellular interactions between cancer cells and fibroblasts is urgently needed, given the slow progress in the management of various solid cancers. In our previous study, we observed obvious mechanical force-mediated interactions between hepatocellular carcinoma (HCC) cells and fibroblasts through integrins and ECM proteins by using our coculture model and discovered that these interactions play important roles in 3D structure formation and tumor growth, suggesting their potential application in HCC treatment. In this review, we summarize the recent research progress in this field in hopes of providing insight into the development of potential anticancer strategies, with a special focus on HCC.

Keywords

Mechanical force / intercellular interactions / fibroblast / hepatocellular carcinoma

Cite this article

Download citation ▾
Zheng Peng, Yanling Ding, Hongyu Zhang, Xia Meng, Yiyong Huang, Pengfei Zhang, Zepeng Li, Xiaoling Zhou. Mechanical force-mediated interactions between cancer cells and fibroblasts and their role in the progression of hepatocellular carcinoma. Journal of Cancer Metastasis and Treatment, 2024, 10: 4 DOI:10.20517/2394-4722.2023.137

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson NM.The tumor microenvironment.Curr Biol2020;30:R921-5 PMCID:PMC8194051

[2]

Najafi M,Farhood B.Tumor microenvironment: interactions and therapy.J Cell Physiol2019;234:5700-21

[3]

Yan H,Lowengrub J.Stress generation, relaxation and size control in confined tumor growth.PLoS Comput Biol2021;17:e1009701 PMCID:PMC8726498

[4]

Purkayastha P,Lele TP.Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure.Cytoskeleton2021;78:312-22 PMCID:PMC8490302

[5]

Nia HT,Jain RK.Mapping physical tumor microenvironment and drug delivery.Clin Cancer Res2019;25:2024-6 PMCID:PMC6445672

[6]

Hayward MK,Weaver VM.Tissue mechanics in stem cell fate, development, and cancer.Dev Cell2021;56:1833-47 PMCID:PMC9056158

[7]

Northey JJ,Weaver VM.Tissue force programs cell fate and tumor aggression.Cancer Discov2017;7:1224-37 PMCID:PMC5679454

[8]

Ayad NME,Weaver VM.Tissue mechanics, an important regulator of development and disease.Philos Trans R Soc Lond B Biol Sci2019;374:20180215 PMCID:PMC6627022

[9]

Barnes JM,Weaver VM.Tissue mechanics regulate brain development, homeostasis and disease.J Cell Sci2017;130:71-82 PMCID:PMC5394781

[10]

Levayer R.Solid stress, competition for space and cancer: the opposing roles of mechanical cell competition in tumour initiation and growth.Semin Cancer Biol2020;63:69-80 PMCID:PMC7221353

[11]

Han SJ,Kim KS.Contribution of mechanical homeostasis to epithelial-mesenchymal transition.Cell Oncol2022;45:1119-36

[12]

Wang J,Yang G,Li M.Transient receptor potential canonical 1 channel mediates the mechanical stress-induced epithelial-mesenchymal transition of human bronchial epithelial (16HBE) cells.Int J Mol Med2020;46:320-30 PMCID:PMC7255483

[13]

Jang I.Integrins, CAFs and mechanical forces in the progression of cancer.Cancers2019;11:721 PMCID:PMC6562616

[14]

Martinez A,Scalise CB.Understanding the effect of mechanical forces on ovarian cancer progression.Gynecol Oncol2021;162:154-62 PMCID:PMC9115803

[15]

Bertolio R,Del Sal G.Dynamic links between mechanical forces and metabolism shape the tumor milieu.Curr Opin Cell Biol2023;84:102218

[16]

Montagner M.Mechanical forces as determinants of disseminated metastatic cell fate.Cells2020;9:250 PMCID:PMC7016729

[17]

Bertero T.Mechanical forces rewire metabolism in the tumor niche.Mol Cell Oncol2019;6:1592945 PMCID:PMC6512933

[18]

Bregenzer ME,Mehta P,Repetto T.The role of cancer stem cells and mechanical forces in ovarian cancer metastasis.Cancers2019;11:1008 PMCID:PMC6679114

[19]

van Helvert S, Storm C, Friedl P. Mechanoreciprocity in cell migration.Nat Cell Biol2018;20:8-20 PMCID:PMC5943039

[20]

Butcher DT,Weaver VM.A tense situation: forcing tumour progression.Nat Rev Cancer2009;9:108-22 PMCID:PMC2649117

[21]

Nagelkerke A,Rowan AE.The mechanical microenvironment in cancer: how physics affects tumours.Semin Cancer Biol2015;35:62-70

[22]

Jaalouk DE.Mechanotransduction gone awry.Nat Rev Mol Cell Biol2009;10:63-73 PMCID:PMC2668954

[23]

Young KM.Cellular mechanosignaling for sensing and transducing matrix rigidity.Curr Opin Cell Biol2023;83:102208 PMCID:PMC10527818

[24]

Li X.Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis.Int J Biol Sci2020;16:2014-28 PMCID:PMC7294938

[25]

Najafi M,Mortezaee K.Extracellular matrix (ECM) stiffness and degradation as cancer drivers.J Cell Biochem2019;120:2782-90

[26]

Sahai E,Cukierman E.A framework for advancing our understanding of cancer-associated fibroblasts.Nat Rev Cancer2020;20:174-86 PMCID:PMC7046529

[27]

Dorbala S.Fibroblast activation: a novel mechanism of heart failure in light chain cardiac amyloidosis?.JACC Cardiovasc Imaging2022;15:1971-3

[28]

Kalli M,Gkretsi V.Solid stress facilitates fibroblasts activation to promote pancreatic cancer cell migration.Ann Biomed Eng2018;46:657-69 PMCID:PMC5951267

[29]

Peng Z,Zhang P.Intercellular interactions mediated by HGF and TGF-Β promote the 3D spherical and xenograft growth of liver cancer cells.Curr Protein Pept Sci2024;25:71-82

[30]

Chiew GGY,Perng Low K.Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model.Sci Rep2015;5:10801 PMCID:PMC4459107

[31]

Gerarduzzi C.Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective.Inflamm Res2017;66:451-65

[32]

Ansardamavandi A.The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective.Biochim Biophys Acta Mol Cell Res2021;1868:119103

[33]

Zhang Q.Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer.Oncol Lett2018;15:691-8 PMCID:PMC5772670

[34]

Ping Q,Cheng X.Cancer-associated fibroblasts: overview, progress, challenges, and directions.Cancer Gene Ther2021;28:984-99

[35]

Houthuijzen JM.Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment.Cancer Metastasis Rev2018;37:577-97

[36]

Peng Z,Tong H.The interactions between integrin α5β1 of liver cancer cells and fibronectin of fibroblasts promote tumor growth and angiogenesis.Int J Biol Sci2022;18:5019-37 PMCID:PMC9379399

[37]

An J,Won M.Mechanical stimuli-driven cancer therapeutics.Chem Soc Rev2023;52:30-46

[38]

Ribatti D.A revisited concept: contact inhibition of growth. From cell biology to malignancy.Exp Cell Res2017;359:17-9

[39]

Gérard C.The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition.Interface Focus2014;4:20130075 PMCID:PMC3996587

[40]

Nia HT,Jain RK.Physical traits of cancer.Science2020;370:eaaz0868 PMCID:PMC8274378

[41]

Suresh S.Nanomedicine: elastic clues in cancer detection.Nat Nanotechnol2007;2:748-9

[42]

Venkatesh SK,Glockner JF.MR elastography of liver tumors: preliminary results.AJR Am J Roentgenol2008;190:1534-40 PMCID:PMC2894569

[43]

Wells PN.Medical ultrasound: imaging of soft tissue strain and elasticity.J R Soc Interface2011;8:1521-49 PMCID:PMC3177611

[44]

Grady ME,Eckmann DM.Cell elasticity with altered cytoskeletal architectures across multiple cell types.J Mech Behav Biomed Mater2016;61:197-207

[45]

Rotsch C.Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.Biophys J2000;78:520-35 PMCID:PMC1300659

[46]

Park S,Cardenas R,Shih CK.Cell motility and local viscoelasticity of fibroblasts.Biophys J2005;89:4330-42 PMCID:PMC1366997

[47]

Evans DW,Baptista PM,Sparks JL.Scale-dependent mechanical properties of native and decellularized liver tissue.Biomech Model Mechanobiol2013;12:569-80

[48]

The Physical Sciences - Oncology Centers Network. A physical sciences network characterization of non-tumorigenic and metastatic cells.Sci Rep2013;3:1449

[49]

Xu W,Kim B,McDonald J.Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells.PLoS One2012;7:e46609 PMCID:PMC3464294

[50]

Mashanov GI.Automatic detection of single fluorophores in live cells.Biophys J2007;92:2199-211 PMCID:PMC1861788

[51]

Pelipenko J,Kristl J.Nanofiber diameter as a critical parameter affecting skin cell response.Eur J Pharm Sci2015;66:29-35

[52]

Rubtsova SN,Gloushankova NA.Phenotypic plasticity of cancer cells based on remodeling of the actin cytoskeleton and adhesive structures.Int J Mol Sci2021;22:1821 PMCID:PMC7918886

[53]

Labernadie A,Brugués A.A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion.Nat Cell Biol2017;19:224-37 PMCID:PMC5831988

[54]

Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion.Nat Rev Cancer2021;21:592-604

[55]

Ebrahim S,Weigert R.The actomyosin cytoskeleton drives micron-scale membrane remodeling in vivo via the generation of mechanical forces to balance membrane tension gradients.Bioessays2018;40:e1800032 PMCID:PMC6447306

[56]

Jain RK,Stylianopoulos T.The role of mechanical forces in tumor growth and therapy.Annu Rev Biomed Eng2014;16:321-46 PMCID:PMC4109025

[57]

Zhang Y,Bomba HN,Gu Z.Mechanical force-triggered drug delivery.Chem Rev2016;116:12536-63

[58]

Broders-Bondon F,Fernandez-Sanchez ME.Mechanotransduction in tumor progression: the dark side of the force.J Cell Biol2018;217:1571-87 PMCID:PMC5940296

[59]

Barbazan J,Gómez-González M.Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction.Nat Commun2023;14:6966 PMCID:PMC10618488

[60]

Miyazaki K,Hoshino D,Kumagai H.Cancer cell migration on elongate protrusions of fibroblasts in collagen matrix.Sci Rep2019;9:292 PMCID:PMC6342997

[61]

Goldmann WH,Thievessen I.Vinculin, cell mechanics and tumour cell invasion.Cell Biol Int2013;37:397-405

[62]

Wirtz D,Searson PC.The physics of cancer: the role of physical interactions and mechanical forces in metastasis.Nat Rev Cancer2011;11:512-22 PMCID:PMC3262453

[63]

Rahaman SG,Mukherjee P,Rahaman SO.Mechanosensing and mechanosignal transduction in atherosclerosis.Curr Atheroscler Rep2023;25:711-21

[64]

Wang L,Song R.Integrins in the regulation of mesenchymal stem cell differentiation by mechanical signals.Stem Cell Rev Rep2022;18:126-41

[65]

Graf F,Ho AD,Maercker C.The extracellular matrix proteins type I collagen, type III collagen, fibronectin, and laminin 421 stimulate migration of cancer cells.FASEB J2021;35:e21692

[66]

Inman A.Feeling the force: multiscale force sensing and transduction at the cell-cell interface.Semin Cell Dev Biol2021;120:53-65

[67]

Mège RM.Integration of cadherin adhesion and cytoskeleton at adherens junctions.Cold Spring Harb Perspect Biol2017;9:a028738 PMCID:PMC5411698

[68]

Gloushankova NA,Zhitnyak IY.Cadherin-mediated cell-cell interactions in normal and cancer cells.Tissue Barriers2017;5:e1356900 PMCID:PMC5571778

[69]

Castellanos-Martín A,Sáez-Freire Mdel M.Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach.Genome Biol2015;16:40 PMCID:PMC4389302

[70]

Saini K.Forced unfolding of proteins directs biochemical cascades.Biochemistry2019;58:4893-902

[71]

Moore SW,Lynch CD.Netrin-1 attracts axons through FAK-dependent mechanotransduction.J Neurosci2012;32:11574-85 PMCID:PMC3461192

[72]

Zuidema A,Sonnenberg A.Crosstalk between cell adhesion complexes in regulation of mechanotransduction.Bioessays2020;42:e2000119

[73]

Lessey EC,Burridge K.From mechanical force to RhoA activation.Biochemistry2012;51:7420-32 PMCID:PMC3567302

[74]

Angulo-Urarte A,Huveneers S.Cell-cell junctions as sensors and transducers of mechanical forces.Biochim Biophys Acta Biomembr2020;1862:183316

[75]

Li C,Liu X.Extracellular matrix-derived mechanical force governs breast cancer cell stemness and quiescence transition through integrin-DDR signaling.Signal Transduct Target Ther2023;8:247 PMCID:PMC10300038

[76]

Gaggioli C,Hidalgo-Carcedo C.Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells.Nat Cell Biol2007;9:1392-400

[77]

Hebner C,Debnath J.Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures.Annu Rev Pathol2008;3:313-39

[78]

Guan X,Dong C.Rho GTPases and related signaling complexes in cell migration and invasion.Exp Cell Res2020;388:111824

[79]

Xie X,Edupuganti R.c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun.Oncogene2017;36:2599-608 PMCID:PMC6116358

[80]

Finegan TM.Division orientation: disentangling shape and mechanical forces.Cell Cycle2019;18:1187-98 PMCID:PMC6592245

[81]

Provenzano PP.Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling.J Cell Sci2011;124:1195-205 PMCID:PMC3065381

[82]

Ma S,Chen R.The hippo pathway: biology and pathophysiology.Annu Rev Biochem2019;88:577-604

[83]

Zhang C,Gao Z,Gao J.Regulation of hippo signaling by mechanical signals and the cytoskeleton.DNA Cell Biol2020;39:159-66

[84]

Gerashchenko TS,Krakhmal NV.Markers of cancer cell invasion: are they good enough?.J Clin Med2019;8:1092 PMCID:PMC6723901

[85]

Tse JM,Tyrrell JA.Mechanical compression drives cancer cells toward invasive phenotype.Proc Natl Acad Sci USA2012;109:911-6 PMCID:PMC3271885

[86]

Mierke CT.The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.Rep Prog Phys2019;82:064602

[87]

Liang Y,Song X.Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets.Semin Cancer Biol2020;60:14-27

[88]

Kumar S.Mechanics, malignancy, and metastasis: the force journey of a tumor cell.Cancer Metastasis Rev2009;28:113-27 PMCID:PMC2658728

[89]

DeLeon-Pennell KY,Lindsey ML.Fibroblasts: the arbiters of extracellular matrix remodeling.Matrix Biol2020;91-2:1-7 PMCID:PMC7434687

[90]

Ying F,Lee TKW.Cancer-associated fibroblasts in hepatocellular carcinoma and cholangiocarcinoma.Cell Mol Gastroenterol Hepatol2023;15:985-99 PMCID:PMC10040968

[91]

Mandal K,Rylander A,Janmey PA.Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity.Biomater Sci2020;8:1316-28

[92]

Katira P,Zaman MH.Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.Front Oncol2013;3:145 PMCID:PMC3678107

[93]

Riehl BD,Kwon IK.Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.Tissue Eng Part B Rev2012;18:288-300 PMCID:PMC3402846

[94]

Yang L,Wang S,Zhao Z.In vitro mechanical loading models for periodontal ligament cells: from two-dimensional to three-dimensional models.Arch Oral Biol2015;60:416-24

[95]

Vedadghavami A,Mohammadi MH.Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.Acta Biomater2017;62:42-63

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/