PDF
Abstract
Aim: Heterogeneity of glioblastoma (GB) cells significantly contributes to tumor resistance against temozolomide (TMZ) and the development of disease relapse. Multiple molecular mechanisms are involved in this process, yet the contribution of proteoglycans (PGs) remains unknown. This study aimed to investigate the potential involvement of PGs (both at core proteins and polysaccharide chains) in the heterogeneity and TMZ resistance of GB cells.
Methods: Seven human GB cell lines were characterized for TMZ sensitivity, cell phenotypic traits, gene expression for glucocorticoid receptor (GR, NR3C1), PG core proteins- and heparan sulfate (HS) biosynthesis-related genes and content of their chondroitin sulfate (CS) and HS chains.
Results: Although the studied cell lines have similar proliferation rates, they significantly differ in their migration activity, clonogenicity, and TMZ resistance (IC50 8.51-369.59 µM in the line of U343, LN215, HS683, U87, LN71, LN405, LN18), creating a specific phenotype for each cell line. Some PGs (NG2/CSPG4, CSPG5, and versican) contributed to the molecular heterogeneity of these cells being cell line-specifically expressed in all cell lines, which also differed in terms of the CS/HS content. Transcriptional activity of the HS metabolic system was low in these GB cell lines, expressing mainly EXT1/2 and NDST1/2, while expression levels of sulfotransferases and SULF2 were cell line-specific. TMZ resistance of these cells was correlated with the expression of stem-cell marker CD44 (+3.5-fold, r = 0.73) and GR (-3-fold, r = -0.81). TMZ treatment of the resistant (LN405) and sensitive (LN215) cells resulted in complex changes in cell migration as well as NG2/CSPG4 expression and CS/HS content.
Conclusion: Differential expression of PGs and CS/HS content contribute to the heterogeneity of GB cells, and CD44 and NR3C1 might be informative biomarkers for TMZ resistance.
Keywords
Glioblastoma
/
temozolomide resistance
/
extracellular matrix
/
proteoglycan
/
glycosaminoglycan
/
heparan sulfate
/
chondroitin sulfate
/
glucocorticoid receptor
Cite this article
Download citation ▾
Sofia A. Nikitina, Dmitry K. Sokolov, Alexandra Y. Tsidulko, Anastasia V. Strokotova, Elizaveta Fasler-Kan, Elvira V. Grigorieva.
The contribution of proteoglycans to heterogeneity and temozolomide resistance of glioblastoma cells.
Journal of Cancer Metastasis and Treatment, 2023, 9: 40 DOI:10.20517/2394-4722.2023.119
| [1] |
Torrisi F,D’Aprile S.The hallmarks of glioblastoma: heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression.Biomedicines2022;10:806 PMCID:PMC9031586
|
| [2] |
Lauko A,Ahluwalia MS.Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors.Semin Cancer Biol2022;82:162-75 PMCID:PMC9618157
|
| [3] |
Becker AP,Haque SJ.Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology.Cancers2021;13:761 PMCID:PMC7918815
|
| [4] |
Hutóczki G,Birkó Z.Novel concepts of glioblastoma therapy concerning its heterogeneity.Int J Mol Sci2021;22:10005 PMCID:PMC8470251
|
| [5] |
Oliver L,Salaud C,Cartron PF.Drug resistance in glioblastoma: are persisters the key to therapy?.Cancer Drug Resist2020;3:287-301 PMCID:PMC8992484
|
| [6] |
Stupp R,van den Bent MJ.Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N Engl J Med2005;352:987-96
|
| [7] |
Tan AC,López GY,Friedman HS.Management of glioblastoma: state of the art and future directions.CA Cancer J Clin2020;70:299-312
|
| [8] |
Lee SY.Temozolomide resistance in glioblastoma multiforme.Genes Dis2016;3:198-210 PMCID:PMC6150109
|
| [9] |
Arora A.Glioblastoma vs temozolomide: can the red queen race be won?.Cancer Biol Ther2019;20:1083-90 PMCID:PMC6606031
|
| [10] |
Zhang J,Bradshaw TD.Temozolomide: mechanisms of action, repair and resistance.Curr Mol Pharmacol2012;5:102-14
|
| [11] |
Tomar MS,Srivastava C.Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance.Biochim Biophys Acta Rev Cancer2021;1876:188616
|
| [12] |
Singh N,Hennis L.Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review.Cancer Drug Resist2021;4:17-43 PMCID:PMC8319838
|
| [13] |
Choo M,Kim HS.Involvement of cell shape and lipid metabolism in glioblastoma resistance to temozolomide.Acta Pharmacol Sin2023;44:670-9 PMCID:PMC9958008
|
| [14] |
Kopecka J.Overcoming drug resistance in glioblastoma: new options in sight?.Cancer Drug Resist2021;4:512-6 PMCID:PMC9019268
|
| [15] |
Bao Z,Wang Q.Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution.Front Med2021;15:551-61
|
| [16] |
Virtuoso A,De Luca C.The glioblastoma microenvironment: morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence.Int J Mol Sci2021;22:3301 PMCID:PMC8036663
|
| [17] |
Dapash M,Castro B,Lesniak MS.The interplay between glioblastoma and its microenvironment.Cells2021;10:2257 PMCID:PMC8469987
|
| [18] |
DeCordova S,Tsolaki AG.Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma.Front Immunol2020;11:1402 PMCID:PMC7379131
|
| [19] |
Eisenbarth D.Insights into the co-evolution of glioblastoma and associated macrophages.J Cancer Metastasis Treat2023;9:14.
|
| [20] |
Seker-Polat F,Solaroglu I.Tumor cell infiltration into the brain in glioblastoma: from mechanisms to clinical perspectives.Cancers2022;14:443 PMCID:PMC8773542
|
| [21] |
Marino S,Di Bonaventura R.The extracellular matrix in glioblastomas: a glance at its structural modifications in shaping the tumoral microenvironment-a systematic review.Cancers2023;15:1879 PMCID:PMC10046791
|
| [22] |
Towner RA,Saunders D.Novel approaches to combat chemoresistance against glioblastomas.Cancer Drug Resist2020;3:686-98 PMCID:PMC8992560
|
| [23] |
Jiapaer S,Tanaka S,Nakada M.Potential strategies overcoming the temozolomide resistance for glioblastoma.Neurol Med Chir2018;58:405-21 PMCID:PMC6186761
|
| [24] |
De Hauwer C,Darro F.Dynamic characterization of glioblastoma cell motility.Biochem Biophys Res Commun1997;232:267-72
|
| [25] |
Hagemann C,Haas S.Comparative expression pattern of matrix-metalloproteinases in human glioblastoma cell-lines and primary cultures.BMC Res Notes2010;3:293 PMCID:PMC2996401
|
| [26] |
Ishii N,Merlo A.Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines.Brain Pathol1999;9:469-79 PMCID:PMC8098486
|
| [27] |
Bady P,Castella V.DNA fingerprinting of glioma cell lines and considerations on similarity measurements.Neuro Oncol2012;14:701-11 PMCID:PMC3367844
|
| [28] |
Studer A,Diserens AC.Characterization of four human malignant glioma cell lines.Acta Neuropathol1985;66:208-17
|
| [29] |
Guo M,Zhao J.Identification of functionally distinct and interacting cancer cell subpopulations from glioblastoma with intratumoral genetic heterogeneity.Neurooncol Adv2020;2:vdaa061 PMCID:PMC7309246
|
| [30] |
Al-Mayhani MT,Narita M.NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature.Neuro Oncol2011;13:830-45 PMCID:PMC3145476
|
| [31] |
Innes JA,Fonseca R.Phenotyping clonal populations of glioma stem cell reveals a high degree of plasticity in response to changes of microenvironment.Lab Invest2022;102:172-84 PMCID:PMC8784315
|
| [32] |
Rehfeld M,Hagel C,Glatzel M.Differential expression of stem cell markers in proliferating cells in glioma.J Cancer Res Clin Oncol2021;147:2969-82 PMCID:PMC8397690
|
| [33] |
Brown DV,Daniel PM.Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity.PLoS One2017;12:e0172791 PMCID:PMC5328356
|
| [34] |
Mooney KL,Sidhu S.The role of CD44 in glioblastoma multiforme.J Clin Neurosci2016;34:1-5
|
| [35] |
Louis DN,Wesseling P.The 2021 WHO classification of tumors of the central nervous system: a summary.Neuro Oncol2021;23:1231-51
|
| [36] |
Berger TR,Lang-Orsini M.World Health Organization 2021 classification of central nervous system tumors and implications for therapy for adult-type gliomas: a review.JAMA Oncol2022;8:1493-501
|
| [37] |
Kurokawa R,Baba A.Major changes in 2021 World Health Organization classification of central nervous system tumors.Radiographics2022;42:1474-93
|
| [38] |
Reuss DE.Updates on the WHO diagnosis of IDH-mutant glioma.J Neurooncol2023;162:461-9 PMCID:PMC10227121
|
| [39] |
Trifănescu OG,Mitrică R.Upstaging and downstaging in gliomas-clinical implications for the fifth edition of the World Health Organization classification of tumors of the central nervous system.Diagnostics2023;13:197 PMCID:PMC9858599
|
| [40] |
Lu Y.Multicellular biomarkers of drug resistance as promising targets for glioma precision medicine and predictors of patient survival.Cancer Drug Resist2022;5:511-33 PMCID:PMC9255251
|
| [41] |
Listik E.Glypican-1 in human glioblastoma: implications in tumorigenesis and chemotherapy.Oncotarget2020;11:828-45 PMCID:PMC7061737
|
| [42] |
Kolliopoulos C,Castillejo-Lopez C,Heldin P.CD44 depletion in glioblastoma cells suppresses growth and stemness and induces senescence.Cancers2022;14:3747 PMCID:PMC9367353
|
| [43] |
Gudbergsson JM,Kostrikov S.Conventional treatment of glioblastoma reveals persistent CD44+ subpopulations.Mol Neurobiol2020;57:3943-55
|
| [44] |
Tran VM,McKinney A.Heparan sulfate glycosaminoglycans in glioblastoma promote tumor invasion.Mol Cancer Res2017;15:1623-33 PMCID:PMC6059807
|
| [45] |
Xiong A,Forsberg-nilsson K.Involvement of heparan sulfate and heparanase in neural development and pathogenesis of brain tumors. In: Vlodavsky I, Sanderson RD, Ilan N, editors. Heparanase. Cham: Springer International Publishing; 2020. pp. 365-403.
|
| [46] |
Jaime-Ramirez AC,Yoo JY.Humanized chondroitinase ABC sensitizes glioblastoma cells to temozolomide.J Gene Med2017;19:e2942 PMCID:PMC5382089
|
| [47] |
Tsidulko AY,de La Bourdonnaye G.Conventional anti-glioblastoma chemotherapy affects proteoglycan composition of brain extracellular matrix in rat experimental model in vivo.Front Pharmacol2018;9:1104 PMCID:PMC6176078
|
| [48] |
Tsidulko AY,Khotskina AS.Chemotherapy-induced degradation of glycosylated components of the brain extracellular matrix promotes glioblastoma relapse development in an animal model.Front Oncol2021;11:713139 PMCID:PMC8327169
|
| [49] |
Aladev SD,Strokotova AV.Dexamethasone effects on the expression and content of glycosylated components of mouse brain tissue.Adv Mol Onkol2023;10:25-39. (in Russian)
|
| [50] |
Sokolov DK,Khotskina AS.Dexamethasone inhibits heparan sulfate biosynthetic system and decreases heparan sulfate content in orthotopic glioblastoma tumors in mice.Int J Mol Sci2023;24:10243 PMCID:PMC10299293
|