Insights into the co-evolution of glioblastoma and associated macrophages

David Eisenbarth , Y. Alan Wang

Journal of Cancer Metastasis and Treatment ›› 2023, Vol. 9 : 14

PDF
Journal of Cancer Metastasis and Treatment ›› 2023, Vol. 9:14 DOI: 10.20517/2394-4722.2023.09
review-article

Insights into the co-evolution of glioblastoma and associated macrophages

Author information +
History +
PDF

Abstract

Glioblastoma (GBM) is one of the most immunosuppressive and heterogeneous tumors with limited treatment options. Most studies relied on treatment-experienced patient samples to elucidate the origins of tumor heterogeneity, introducing bias into the analysis. The analysis of samples from multifocal GBM patients, in which independent lesions arise from the same progenitor and undergo parallel evolution, enables the study of the natural evolution of GBM while removing the effect of therapy on the emergence of heterogeneity. This enables the identification of critical events in the evolution of GBM and the unbiased study of subtype progression, diversity, and invasive potential. The tumor microenvironment of GBM undergoes significant changes throughout tumor progression. Recent studies have highlighted the switch from an abundance of resident microglia-derived macrophages in earlier stages to the prevalence of blood-derived macrophages in later stages of GBM. There is conclusive evidence that these alterations cannot be viewed in isolation and that the tumor microenvironment co-evolves with tumor cells during cancer progression. Together with an increasingly hypoxic environment, this culminates in highly immunosuppressive conditions, resulting in a feedback loop further reinforcing evolutionary changes in the tumor. A new study now provides a unique look at the natural evolution of GBM, identifies critical events in its development, and has the potential to help improve the diagnosis and therapy of this deadly disease.

Keywords

Glioblastoma / GBM / macrophages / microglia / heterogeneity / cancer evolution / tumor microenvironment / hypoxia

Cite this article

Download citation ▾
David Eisenbarth, Y. Alan Wang. Insights into the co-evolution of glioblastoma and associated macrophages. Journal of Cancer Metastasis and Treatment, 2023, 9: 14 DOI:10.20517/2394-4722.2023.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller KD,Kruchko C.Brain and other central nervous system tumor statistics, 2021.CA Cancer J Clin2021;71:381-406

[2]

Abdelfattah N,Wang C.Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target.Nat Commun2022;13:767

[3]

Puchalski RB,Miller J.An anatomic transcriptional atlas of human glioblastoma.Science2018;360:660-3

[4]

Wang J,Ladewig E.Clonal evolution of glioblastoma under therapy.Nat Genet2016;48:768-76 PMCID:PMC5627776

[5]

Kim J,Cho HJ.Spatiotemporal evolution of the primary glioblastoma genome.Cancer Cell2015;28:318-28

[6]

Abou-El-Ardat K,Becker K.Comprehensive molecular characterization of multifocal glioblastoma proves its monoclonal origin and reveals novel insights into clonal evolution and heterogeneity of glioblastomas.Neuro Oncol2017;19:546-57 PMCID:PMC5464316

[7]

Wu L,Zhang J.Natural coevolution of tumor and immunoenvironment in glioblastoma.Cancer Discov2022;12:2820-37 PMCID:PMC9716251

[8]

Seferbekova Z,Yates LR.Spatial biology of cancer evolution.Nat Rev Genet2023;24:295-313

[9]

Ozawa T,Cheng YK.Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma.Cancer Cell2014;26:288-300 PMCID:PMC4143139

[10]

Sakthikumar S,Haseeb L.Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes.Genome Biol2020;21:127 PMCID:PMC7281935

[11]

Wang Q,Hu X.Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment.Cancer Cell2017;32:42-56.e6 PMCID:PMC5599156

[12]

Alzial G,Paris F,Clavreul A.Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma.Oncogene2022;41:613-21 PMCID:PMC8799461

[13]

Patel AP,Trombetta JJ.Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.Science2014;344:1396-401 PMCID:PMC4123637

[14]

Marques C,Kroon P.NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1.Elife2021;10:e64846 PMCID:PMC8370767

[15]

Eferl R.AP-1: a double-edged sword in tumorigenesis.Nat Rev Cancer2003;3:859-68

[16]

Verhaak RG,Purdom E.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.Cancer Cell2010;17:98-110

[17]

Neftel C,Filbin MG.An integrative model of cellular states, plasticity, and genetics for glioblastoma.Cell2019;178:835-849.e21 PMCID:PMC6703186

[18]

Castellan M,Fujimura A.Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in Glioblastoma.Nat Cancer2021;2:174-88 PMCID:PMC7116831

[19]

Johnson KC,Courtois ET.Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response.Nat Genet2021;53:1456-68 PMCID:PMC8570135

[20]

Park MD,Ginhoux F.Macrophages in health and disease.Cell2022;185:4259-79 PMCID:PMC9908006

[21]

Pombo Antunes AR,Lodi F.Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization.Nat Neurosci2021;24:595-610

[22]

Müller S,Liu SJ.Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment.Genome Biol2017;18:234 PMCID:PMC5738907

[23]

Hara T,Mathewson ND.Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma.Cancer Cell2021;39:779-792.e11 PMCID:PMC8366750

[24]

Lin Z,Yu E.ANXA1 as a prognostic and immune microenvironmental marker for gliomas based on transcriptomic analysis and experimental validation.Front Cell Dev Biol2021;9:659080 PMCID:PMC8371204

[25]

Chen R,Han N.Annexin-1 is an oncogene in glioblastoma and causes tumour immune escape through the indirect upregulation of interleukin-8.J Cell Mol Med2022;26:4343-56 PMCID:PMC9344830

[26]

Araújo TG,Ferreira HSV,Goulart LR.Annexin A1 as a regulator of immune response in cancer.Cells2021;10:2245 PMCID:PMC8464935

[27]

Leslie J,Del Carpio Pons A.FPR-1 is an important regulator of neutrophil recruitment and a tissue-specific driver of pulmonary fibrosis.JCI Insight2020;5:125937 PMCID:PMC7101152

[28]

Komohara Y,Kuratsu J.Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas.J Pathol2008;216:15-24

[29]

Fares J,Khachfe HH,Fares Y.Molecular principles of metastasis: a hallmark of cancer revisited.Signal Transduct Target Ther2020;5:28 PMCID:PMC7067809

[30]

Meyer-Schaller N,Diepenbruck M.A hierarchical regulatory landscape during the multiple stages of EMT.Dev Cell2019;48:539-553.e6

[31]

Noy R.Tumor-associated macrophages: from mechanisms to therapy.Immunity2014;41:49-61 PMCID:PMC4137410

[32]

Hu B,Wang YA.Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth.Cell2016;167:1281-1295.e18 PMCID:PMC5320931

[33]

Mei X,Chen FR,Chen ZP.Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging.Neuro Oncol2017;19:1109-18. PMCID:PMC5570159

[34]

Ding L,Zhao Y.Serum CCL2 and CCL3 as potential biomarkers for the diagnosis of oral squamous cell carcinoma.Tumour Biol2014;35:10539-46

[35]

Duan Z.Targeting macrophages in cancer immunotherapy.Signal Transduct Target Ther2021;6:127 PMCID:PMC7994399

[36]

Yang M,Pollard JW.Diverse functions of macrophages in different tumor microenvironments.Cancer Res2018;78:5492-503 PMCID:PMC6171744

[37]

Bradl M.Oligodendrocytes: biology and pathology.Acta Neuropathol2010;119:37-53 PMCID:PMC2799635

[38]

Huang Y,Rajappa P.Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier.Cancer Res2014;74:1011-21

[39]

Chédeville AL,Monteiro AR,Madureira PA.Investigating glioblastoma response to hypoxia.Biomedicines2020;8:310 PMCID:PMC7555589

[40]

Ma K,Chen X,Yang J.S100A10 is a new prognostic biomarker related to the malignant molecular features and immunosuppression process of adult gliomas.World Neurosurg2022;165:e650-63

[41]

Tantyo NA,Rasman SZ.The prognostic value of S100A10 expression in cancer.Oncol Lett2019;17:1417-24 PMCID:PMC6341771

[42]

Wan X,Hou Y.FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts.Theranostics2021;11:4975-91 PMCID:PMC7978317

[43]

Chen P,Li J.Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-Null glioma.Cancer Cell2019;35:868-884.e6 PMCID:PMC6561349

[44]

Parat MO.Caveolin-1, caveolae, and glioblastoma.Neuro Oncol2012;14:679-88 PMCID:PMC3367849

[45]

Martin S,Terrand J,Takeda K.Caveolin-1 regulates glioblastoma aggressiveness through the control of α5β1 integrin expression and modulates glioblastoma responsiveness to SJ749, an α5β1 integrin antagonist.Biochim Biophys Acta2009;1793:354-67

[46]

Nowicki MO,Chiocca EA.Proteomic analysis implicates vimentin in glioblastoma cell migration.Cancers2019;11:466 PMCID:PMC6521049

[47]

Mooney KL,Sidhu S.The role of CD44 in glioblastoma multiforme.J Clin Neurosci2016;34:1-5

[48]

Wang Y,Wen W.SERPINH1 is a potential prognostic biomarker and correlated with immune infiltration: a pan-cancer analysis.Front Genet2021;12:756094 PMCID:PMC8764125

[49]

Sattiraju A,Chen Z.Spatial patterning and immunosuppression of glioblastoma immune contexture in hypoxic niches.bioRxiv2022;3:482530

[50]

Hu WM,Zhang TZ,Li XN.LGALS3 is a poor prognostic factor in diffusely infiltrating gliomas and is closely correlated with CD163+ tumor-associated macrophages.Front Med2020;7:182 PMCID:PMC7254797

[51]

Wang S,Zhao W,Li S.CEBPB upregulates P4HA2 to promote the malignant biological behavior in IDH1 wildtype glioma.FASEB J2023;37:e22848

[52]

Gao Y,Feng L.Targeting JUN, CEBPB, and HDAC3: a novel strategy to overcome drug resistance in hypoxic glioblastoma.Front Oncol2019;9:33 PMCID:PMC6367651

[53]

Angelastro JM,Kuo J.Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5.Oncogene2006;25:907-16

[54]

Chen Q,Meng X.Immunogenomic analysis reveals LGALS1 contributes to the immune heterogeneity and immunosuppression in glioma.Int J Cancer2019;145:517-30

[55]

Sharanek A,Hernandez-Corchado A.Transcriptional control of brain tumor stem cells by a carbohydrate binding protein.Cell Rep2021;36:109647

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/