Reactive oxygen species in the progression and treatment of malignant mesothelioma

Ava Cote , Terri Messier , Brian Cunniff

Journal of Cancer Metastasis and Treatment ›› 2022, Vol. 8 : 36

PDF
Journal of Cancer Metastasis and Treatment ›› 2022, Vol. 8:36 DOI: 10.20517/2394-4722.2022.41
review-article

Reactive oxygen species in the progression and treatment of malignant mesothelioma

Author information +
History +
PDF

Abstract

Malignant mesothelioma (MM) is an aggressive cancer that affects the pleural and peritoneal mesothelial lining of the lungs and abdomen. Survival rates for patients with MM remain extremely low and effective treatments are limited. MM tumors harbor both genotypic and phenotypic features that indicate MM tumor cells are under increased oxidative stress, similar to other aggressive cancers. This increased oxidative stress in MM cells supports aggressive growth while providing a therapeutic vulnerability exploitable by redox-modulating compounds. MM tumor cells also exhibit altered mitochondrial structure and function that contribute to the disease through perturbations in metabolism and reactive oxygen species (ROS) production and metabolism. Targeting the altered redox status in cancer through increasing cellular ROS levels directly or inhibiting cellular antioxidant pathways and disrupting ROS scavenging mechanisms has become an exciting area for therapeutic intervention. This review discusses ROS sources and signaling, mitochondrial structure and function and targeting mitochondria ROS as a therapeutic approach for the treatment of MM.

Keywords

Malignant mesothelioma / targeting cellular redox status / pro-oxidant therapy

Cite this article

Download citation ▾
Ava Cote, Terri Messier, Brian Cunniff. Reactive oxygen species in the progression and treatment of malignant mesothelioma. Journal of Cancer Metastasis and Treatment, 2022, 8: 36 DOI:10.20517/2394-4722.2022.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Janes SM,Fennell DA.Perspectives on the treatment of malignant pleural mesothelioma.N Engl J Med2021;385:1207-18

[2]

Sena LA.Physiological roles of mitochondrial reactive oxygen species.Mol Cell2012;48:158-67 PMCID:PMC3484374

[3]

Urso L,Sharova E,Pasello G.Metabolic rewiring and redox alterations in malignant pleural mesothelioma.Br J Cancer2020;122:52-61 PMCID:PMC6964675

[4]

Kleih M,Dong M.Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells.Cell Death Dis2019;10:851 PMCID:PMC6838053

[5]

Cunniff B,Nelson KJ.Disabling mitochondrial peroxide metabolism via combinatorial targeting of peroxiredoxin 3 as an effective therapeutic approach for malignant mesothelioma.PLoS One2015;10:e0127310 PMCID:PMC4444329

[6]

Nelson KJ,Milczarek S.Unique cellular and biochemical features of human mitochondrial peroxiredoxin 3 establish the molecular basis for its specific reaction with thiostrepton.Antioxidants (Basel)2021;10:150 PMCID:PMC7909569

[7]

Reczek CR.ROS-dependent signal transduction.Curr Opin Cell Biol2015;33:8-13 PMCID:PMC4380867

[8]

Finkel T.Signal transduction by reactive oxygen species.J Cell Biol2011;194:7-15 PMCID:PMC3135394

[9]

Ježek P,Plecitá-Hlavatá L.Redox Signaling from mitochondria: signal propagation and its targets.Biomolecules2020;10:93 PMCID:PMC7023504

[10]

Hamanaka RB.Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes.Trends Biochem Sci2010;35:505-13 PMCID:PMC2933303

[11]

Enyedi B,Donkó Á.Spatial and temporal analysis of NADPH oxidase-generated hydrogen peroxide signals by novel fluorescent reporter proteins.Antioxid Redox Signal2013;19:523-34

[12]

Dröse S.Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning.Biochim Biophys Acta2013;1827:578-87

[13]

Marzo N, Chisci E, Giovannoni R. The Role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells.Cells2018;7:156 PMCID:PMC6211135

[14]

Kaelin WG Jr.Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.Mol Cell2008;30:393-402

[15]

Chandel NS,Feliciano CE.Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing.J Biol Chem2000;275:25130-8

[16]

Kumar A,Karuppagounder SS.HIF1α stabilization in hypoxia is not oxidant-initiated.Elife2021;10:e72873 PMCID:PMC8530508

[17]

Gorrini C,Mak TW.Modulation of oxidative stress as an anticancer strategy.Nat Rev Drug Discov2013;12:931-47

[18]

Ogrunc M,Liontos M.Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation.Cell Death Differ2014;21:998-1012 PMCID:PMC4013514

[19]

Vakifahmetoglu-Norberg H,Norberg E.The role of mitochondria in metabolism and cell death.Biochem Biophys Res Commun2017;482:426-31

[20]

Cantley LC.The phosphoinositide 3-kinase pathway.Science2002;296:1655-7

[21]

Lee SR,Kwon J,Jeong W.Reversible inactivation of the tumor suppressor PTEN by H2O2.J Biol Chem2002;277:20336-42

[22]

Leslie NR,Lindsay YE,Gray A.Redox regulation of PI 3-kinase signalling via inactivation of PTEN.EMBO J2003;22:5501-10 PMCID:PMC213768

[23]

Cunniff B,Sweeney P,Heintz NH.Peroxiredoxin 3 levels regulate a mitochondrial redox setpoint in malignant mesothelioma cells.Redox Biol2014;3:79-87 PMCID:PMC4297934

[24]

Laoukili J,Medema RH.FoxM1: at the crossroads of ageing and cancer.Biochim Biophys Acta2007;1775:92-102

[25]

Park HJ,Wang Z.FoxM1, a critical regulator of oxidative stress during oncogenesis.EMBO J2009;28:2908-18 PMCID:PMC2760115

[26]

Anastasiou D,Asara JM.Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses.Science2011;334:1278-83 PMCID:PMC3471535

[27]

Hitosugi T,Vander Heiden MG.Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth.Sci Signal2009;2:ra73 PMCID:PMC2812789

[28]

Christofk HR,Harris MH.The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth.Nature2008;452:230-3

[29]

Diehn M,Lobo NA.Association of reactive oxygen species levels and radioresistance in cancer stem cells.Nature2009;458:780-3 PMCID:PMC2778612

[30]

Rushmore TH,Pickett CB.The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity.J Biol Chem1991;266:11632-9

[31]

Meister A.Selective modification of glutathione metabolism.Science1983;220:472-7

[32]

Mitsuishi Y,Kawatani Y.Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming.Cancer Cell2012;22:66-79

[33]

Kim YJ,Liang P,Zhang Y.Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology.Cancer Res2007;67:546-54

[34]

Nogueira V,Chen CC.Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis.Cancer Cell2008;14:458-70 PMCID:PMC3038665

[35]

Vousden KH.p53 and metabolism.Nat Rev Cancer2009;9:691-700

[36]

Suzuki S,Poyurovsky MV.Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species.Proc Natl Acad Sci USA2010;107:7461-6 PMCID:PMC2867754

[37]

Budanov AV.p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling.Cell2008;134:451-60 PMCID:PMC2758522

[38]

Li T,Jiang L.Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence.Cell2012;149:1269-83 PMCID:PMC3688046

[39]

Sullivan LB.Mitochondrial reactive oxygen species and cancer.Cancer Metab2014;2:17 PMCID:PMC4323058

[40]

Chew SH.Malignant mesothelioma as an oxidative stress-induced cancer: An update.Free Radic Biol Med2015;86:166-78

[41]

Kinnula VL,Raivio K.Manganese superoxide dismutase in human pleural mesothelioma cell lines.Free Radic Biol Med1996;21:527-32

[42]

Kahlos K,Saily M.Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma.Int J Cancer2001;95:198-204

[43]

Janssen YM,Driscoll KE,Oberdörster G.Increased expression of manganese-containing superoxide dismutase in rat lungs after inhalation of inflammatory and fibrogenic minerals.Free Radic Biol Med1994;16:315-22

[44]

Kinnula K,Raivio KO.Endogenous antioxidant enzymes and glutathione S-transferase in protection of mesothelioma cells against hydrogen peroxide and epirubicin toxicity.Br J Cancer1998;77:1097-102 PMCID:PMC2150125

[45]

Kinnula VL,Sormunen R.Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma.J Pathol2002;196:316-23

[46]

Kim H,Park ES.Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells.J Biol Chem2000;275:18266-70

[47]

Wang YG,Liu CH,Zhang MJ.Peroxiredoxin 3 is resistant to oxidation-induced apoptosis of Hep-3b cells.Clin Transl Oncol2014;16:561-6

[48]

Cox AG,Hampton MB.Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling.Biochem J2009;425:313-25

[49]

Stockwell BR,Bayir H.Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017;171:273-85 PMCID:PMC5685180

[50]

Wu J,Gao M.Publisher correction: intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling.Nature2019;572:E20

[51]

Fennell D.Cancer-cell death ironed out.Nature2019;572:314-5

[52]

Zhang Y,Liu X.BAP1 links metabolic regulation of ferroptosis to tumour suppression.Nat Cell Biol2018;20:1181-92 PMCID:PMC6170713

[53]

Bononi A,Giorgi C.Germline BAP1 mutations induce a Warburg effect.Cell Death Differ2017;24:1694-704 PMCID:PMC5596430

[54]

Hebert L,Guillas C.Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function.Oncotarget2017;8:72513-27 PMCID:PMC5641149

[55]

Newick K,Preston K.Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells.PLoS One2012;7:e39404 PMCID:PMC3382597

[56]

Cunniff B,Stumpff J.Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells.J Cell Physiol2013;228:835-45 PMCID:PMC3928986

[57]

Kong X,Li Z.Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer.Cancer Res2013;73:3987-96 PMCID:PMC3702645

[58]

Schiavello M,Bergandi L.Identification of redox-sensitive transcription factors as markers of malignant pleural mesothelioma.Cancers (Basel)2021;13:1138 PMCID:PMC7961847

[59]

Scalcon V,Rigobello MP.Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors.Free Radic Biol Med2018;127:62-79

[60]

Lu J.The thioredoxin antioxidant system.Free Radic Biol Med2014;66:75-87

[61]

Cunniff B,Fredette N,Heintz NH.A direct and continuous assay for the determination of thioredoxin reductase activity in cell lysates.Anal Biochem2013;443:34-40 PMCID:PMC3839276

[62]

Schrepfer E.Mitofusins, from Mitochondria to Metabolism.Mol Cell2016;61:683-94

[63]

Lee JE,Wu H,Voeltz GK.Multiple dynamin family members collaborate to drive mitochondrial division.Nature2016;540:139-43 PMCID:PMC5656044

[64]

Eura Y,Yokota S.Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion.J Biochem2003;134:333-44

[65]

Ježek J,Strich R.The Impact of mitochondrial fission-stimulated ROS Production on pro-apoptotic chemotherapy.Biology (Basel)2021;10:33 PMCID:PMC7825353

[66]

Ježek J,Strich R.Reactive Oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression.Antioxidants (Basel)2018;7:13 PMCID:PMC5789323

[67]

Han XJ,Jiang LP.Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells.Int J Oncol2015;46:691-700

[68]

Wan YY,Yang ZJ.Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells.Oncol Rep2014;32:619-26

[69]

Latimer HR.Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction.Mol Cells2016;39:40-5 PMCID:PMC4749872

[70]

Ko SH,Oh JY.Author correction: succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission.Sci Rep2018;8:13326 PMCID:PMC6120859

[71]

Aravamudan B,Freeman M.Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle.Am J Physiol Lung Cell Mol Physiol2014;306:L840-54 PMCID:PMC4116419

[72]

Jung JU,Lee DW.NIK/MAP3K14 regulates mitochondrial dynamics and trafficking to promote cell invasion.Curr Biol2016;26:3288-302 PMCID:PMC5702063

[73]

Liu TL,Milkie DE.Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.Science2018;360:eaaq1392 PMCID:PMC6040645

[74]

Iwahori K,Fujimoto M.SOCS-1 gene delivery cooperates with cisplatin plus pemetrexed to exhibit preclinical antitumor activity against malignant pleural mesothelioma.Int J Cancer2013;132:459-71

[75]

Nishikawa S,Matsuda A.A molecular targeting against nuclear factor-κB, as a chemotherapeutic approach for human malignant mesothelioma.Cancer Med2014;3:416-25 PMCID:PMC3987091

[76]

Goparaju CM,Volinia S.Onconase mediated NFKβ downregulation in malignant pleural mesothelioma.Oncogene2011;30:2767-77 PMCID:PMC3118086

[77]

Lennon FE,Kanteti R.Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma.Sci Rep2016;6:24578 PMCID:PMC4832330

[78]

Lima AR,Correia M.Dynamin-related protein 1 at the crossroads of cancer.Genes (Basel)2018;9:115 PMCID:PMC5852611

[79]

Qian W,Gibson GA,Bakkenist CJ.Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress.J Cell Sci2012;125:5745-57 PMCID:PMC4074216

[80]

Wang J,Carol Tan YH.Inhibiting crosstalk between MET signaling and mitochondrial dynamics and morphology: a novel therapeutic approach for lung cancer and mesothelioma.Cancer Biol Ther2018;19:1023-32 PMCID:PMC6301806

[81]

Grosso S,Gyuraszova K.The pathogenesis of mesothelioma is driven by a dysregulated translatome.Nat Commun2021;12:4920 PMCID:PMC8363647

[82]

Omenn GS,Thornquist MD.Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease.N Engl J Med1996;334:1150-5

[83]

The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers.N Engl J Med1994;330:1029-35

[84]

Tai DJ,Wu CS.Changes in intracellular redox status influence multidrug resistance in gastric adenocarcinoma cells.Exp Ther Med2012;4:291-6 PMCID:PMC3460287

[85]

Hwang IT,Kim JJ.Drug resistance to 5-FU linked to reactive oxygen species modulator 1.Biochem Biophys Res Commun2007;359:304-10

[86]

Chen Q,Sun AY.Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo.Proc Natl Acad Sci USA2007;104:8749-54 PMCID:PMC1885574

[87]

Alexander MS,Schroeder SR.Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer.Cancer Res2018;78:6838-51 PMCID:PMC6295907

[88]

Mehdi Z,Stolwijk JM.Utilization of pharmacological ascorbate to enhance hydrogen peroxide-mediated radiosensitivity in cancer therapy.Int J Mol Sci2021;22:10880 PMCID:PMC8509557

[89]

Beddowes E,Chan PY.Phase 1 dose-escalation study of pegylated arginine deiminase, cisplatin, and pemetrexed in patients with argininosuccinate synthetase 1-deficient thoracic cancers.J Clin Oncol2017;35:1778-85 PMCID:PMC6141244

[90]

Szlosarek PW,Phillips MM.Metabolic response to pegylated arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase.J Clin Oncol2013;31:e111-3

[91]

Kung HJ,Li CF.Chromatophagy: autophagy goes nuclear and captures broken chromatin during arginine-starvation.Autophagy2015;11:419-21 PMCID:PMC4502812

[92]

Cheng CT,Wang YC.Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction.Commun Biol2018;1:178 PMCID:PMC6203837

[93]

Szlosarek PW,Pallaska A.In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion.Clin Cancer Res2006;12:7126-31

[94]

Kremer JC,Lange SES.Arginine deprivation inhibits the warburg effect and upregulates glutamine anaplerosis and serine biosynthesis in ASS1-deficient cancers.Cell Rep2017;18:991-1004 PMCID:PMC5840045

[95]

Vogelzang NJ,Symanowski J.Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma.J Clin Oncol2003;21:2636-44

[96]

Sasada T,Ueda S.Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II).Free Radic Biol Med1999;27:504-14

[97]

Ishikawa T.Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance.J Biol Chem1993;268:20116-25

[98]

Arnér ES,Sasada T,Holmgren A.Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase, and glutaredoxin by cis -diamminedichloroplatinum (II) and its major metabolite, the glutathione-platinum complex.Free Radic Biol Med2001;31:1170-8

[99]

Zhang X,Fried LE.Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes.Free Radic Biol Med2011;50:811-20 PMCID:PMC3047390

[100]

Corsello SM,Spangler RD.Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling.Nat Cancer2020;1:235-48 PMCID:PMC7328899

[101]

Hegde NS,Rodriguez R.The transcription factor FOXM1 is a cellular target of the natural product thiostrepton.Nat Chem2011;3:725-31

[102]

Bhat UG,Gartel AL.FoxM1 is a general target for proteasome inhibitors.PLoS One2009;4:e6593 PMCID:PMC2721658

[103]

Bird KE,Murcia S.Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy.ACS Chem Biol2020;15:2164-74 PMCID:PMC7442609

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/