Chronic activation of MUC1-C in wound repair promotes progression to cancer stem cells

Donald W. Kufe

Journal of Cancer Metastasis and Treatment ›› 2022, Vol. 8 : 12

PDF
Journal of Cancer Metastasis and Treatment ›› 2022, Vol. 8:12 DOI: 10.20517/2394-4722.2022.03
review-article

Chronic activation of MUC1-C in wound repair promotes progression to cancer stem cells

Author information +
History +
PDF

Abstract

The mucin 1 (MUC1) gene emerged in mammals to afford protection of barrier epithelial tissues from the external environment. MUC1 encodes a transmembrane C-terminal (MUC1-C) subunit that is activated by loss of homeostasis and induces inflammatory, proliferative, and remodeling pathways associated with wound repair. As a consequence, chronic activation of MUC1-C promotes lineage plasticity, epigenetic reprogramming, and carcinogenesis. In driving cancer progression, MUC1-C is imported into the nucleus, where it induces NF-κB inflammatory signaling and the epithelial-mesenchymal transition (EMT). MUC1-C represses gene expression by activating (i) DNA methyltransferase 1 (DNMT1) and DNMT3b, (ii) Polycomb Repressive Complex 1 (PRC1) and PRC2, and (iii) the nucleosome remodeling and deacetylase (NuRD) complex. PRC1/2-mediated gene repression is counteracted by the SWI/SNF chromatin remodeling complexes. MUC1-C activates the SWI/SNF BAF and PBAF complexes in cancer stem cell (CSC) models with the induction of genome-wide differentially accessible regions and expressed genes. MUC1-C regulates chromatin accessibility of enhancer-like signatures in association with the induction of the Yamanaka pluripotency factors and recruitment of JUN and BAF, which promote increases in histone activation marks and opening of chromatin. These and other findings described in this review have uncovered a pivotal role for MUC1-C in integrating lineage plasticity and epigenetic reprogramming, which are transient in wound repair and sustained in promoting CSC progression.

Keywords

MUC1 / MUC1-C / wound repair / CSC / lineage plasticity / epigenetic reprogramming / chromatin remodeling

Cite this article

Download citation ▾
Donald W. Kufe. Chronic activation of MUC1-C in wound repair promotes progression to cancer stem cells. Journal of Cancer Metastasis and Treatment, 2022, 8: 12 DOI:10.20517/2394-4722.2022.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niec RE,Fuchs E.Inflammatory adaptation in barrier tissues.Cell2021;184:3361-75 PMCID:PMC8336675

[2]

Ge Y,Adam RC.Stem cell lineage infidelity drives wound repair and cancer.Cell2017;169:636-650.e14 PMCID:PMC5510746

[3]

Kufe D,Abe M.Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors.Hybridoma1984;3:223-32

[4]

Duraisamy S,Ramasamy S.Evolution of the human MUC1 oncoprotein.Int J Oncol2007;31:671-7

[5]

Kufe DW.Mucins in cancer: function, prognosis and therapy.Nat Rev Cancer2009;9:874-85 PMCID:PMC2951677

[6]

Kufe DW.MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment.Carcinogenesis2020;41:1173-83 PMCID:PMC7513951

[7]

Pelaseyed T,Petersson AC.Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell-protective device.FEBS J2013;280:1491-501 PMCID:PMC3746175

[8]

Shurer CR,Roberts LM.Physical principles of membrane shape regulation by the glycocalyx.Cell2019;177:1757-1770.e21 PMCID:PMC6768631

[9]

Rajabi H,Takahashi H.MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition.Oncogene2014;33:1680-9 PMCID:PMC3783575

[10]

Altschuler Y,Poland PA.Clathrin-mediated endocytosis of MUC1 is modulated by its glycosylation state.Mol Biol Cell2000;11:819-31 PMCID:PMC14813

[11]

Leng Y,Ren J.Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62.J Biol Chem2007;282:19321-30

[12]

Panchamoorthy G,Raina D.Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate.JCI Insight2018;3:99880 PMCID:PMC6124453

[13]

Li W,Jin C.MUC1-C drives stemness in progression of colitis to colorectal cancer.JCI Insight2020;5:137112 PMCID:PMC7406273

[14]

Dvorak HF.Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.N Engl J Med1986;315:1650-9

[15]

Yasumizu Y,Jin C.MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer.Nat Commun2020;11:338 PMCID:PMC6969104

[16]

Takahashi K,Ohnuki M.Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007;131:861-72

[17]

Takahashi K.A decade of transcription factor-mediated reprogramming to pluripotency.Nat Rev Mol Cell Biol2016;17:183-93

[18]

Ben-Porath I,Carey VJ.An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors.Nat Genet2008;40:499-507 PMCID:PMC2912221

[19]

Riggs JW,Varlakhanova N.Induced pluripotency and oncogenic transformation are related processes.Stem Cells Dev2013;22:37-50 PMCID:PMC3528096

[20]

Iglesias JM,Martin AG.Linking pluripotency reprogramming and cancer.Stem Cells Transl Med2017;6:335-9 PMCID:PMC5442824

[21]

Wollenzien H,Kareta MS.Somatic pluripotent genes in tissue repair, developmental disease, and cancer.SPG Biomed2018;1 PMCID:PMC6548517

[22]

Raina D,Rajabi H.Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells.Int J Oncol2012;40:1643-9 PMCID:PMC3326351

[23]

Rajabi H.MUC1-C oncoprotein integrates a program of EMT, epigenetic reprogramming and immune evasion in human carcinomas.Biochim Biophys Acta Rev Cancer2017;1868:117-22 PMCID:PMC5548633

[24]

Rajabi H,Kufe D.MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.Oncogene2018;37:2079-88 PMCID:PMC5908737

[25]

Schäfer M.Cancer as an overhealing wound: an old hypothesis revisited.Nat Rev Mol Cell Biol2008;9:628-38

[26]

Arwert EN,Watt FM.Epithelial stem cells, wound healing and cancer.Nat Rev Cancer2012;12:170-80

[27]

Ge Y.Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer.Nat Rev Genet2018;19:311-25 PMCID:PMC6301069

[28]

Furman D,Verdin E.Chronic inflammation in the etiology of disease across the life span.Nat Med2019;25:1822-32 PMCID:PMC7147972

[29]

Greten FR.Inflammation and cancer: triggers, mechanisms, and consequences.Immunity2019;51:27-41 PMCID:PMC6831096

[30]

Hata T,Takahashi H.MUC1-C activates the NuRD complex to drive dedifferentiation of triple-negative breast cancer cells.Cancer Res2019;79:5711-22 PMCID:PMC6881519

[31]

Luan Z,Fushimi A.MUC1-C dictates neuroendocrine lineage specification in pancreatic ductal adenocarcinomas.Carcinogenesis2022;43:67-76 PMCID:PMC8832436

[32]

Nieto MA,Jackson RA.EMT: 2016.Cell2016;166:21-45

[33]

Bhatia S,Toh A.New insights into the role of phenotypic plasticity and emt in driving cancer progression.Front Mol Biosci2020;7:71 PMCID:PMC7190792

[34]

Ahmad R,Trivedi V.MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling.Nat Cell Biol2007;9:1419-27 PMCID:PMC4209910

[35]

Ahmad R,Joshi MD.MUC1-C oncoprotein functions as a direct activator of the nuclear factor-kappaB p65 transcription factor.Cancer Res2009;69:7013-21 PMCID:PMC2760979

[36]

Ahmad R,Kosugi M.MUC1-C oncoprotein promotes STAT3 activation in an autoinductive regulatory loop.Sci Signal2011;4:ra9 PMCID:PMC3070357

[37]

Gnemmi V,Gaudelot K.MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter.Cancer Lett2014;346:225-36

[38]

Alam M,Tagde A.MUC1-C represses the crumbs complex polarity factor CRB3 and downregulates the hippo pathway.Mol Cancer Res2016;14:1266-76 PMCID:PMC5136335

[39]

Tam WL.The epigenetics of epithelial-mesenchymal plasticity in cancer.Nat Med2013;19:1438-49 PMCID:PMC4190672

[40]

Skrypek N,De Smedt E,Berx G.Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity.Trends Genet2017;33:943-59

[41]

Wainwright EN.Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity.Trends Cancer2017;3:372-86 PMCID:PMC5506260

[42]

Rajabi H,Alam M.DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells.Oncogene2016;35:6439-45 PMCID:PMC5121097

[43]

Hiraki M,Bouillez A.MUC1-C activates BMI1 in human cancer cells.Oncogene2017;36:2791-801 PMCID:PMC5436937

[44]

Yamamoto M,Li Y.Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion.J Biol Chem1997;272:12492-4

[45]

Rajabi H,Jin C.MUC1-C oncoprotein induces TCF7L2 transcription factor activation and promotes cyclin D1 expression in human breast cancer cells.J Biol Chem2012;287:10703-13 PMCID:PMC3322974

[46]

Bouillez A,Pitroda S.Inhibition of MUC1-C suppresses MYC expression and attenuates malignant growth in KRAS mutant lung adenocarcinomas.Cancer Res2016;76:1538-48 PMCID:PMC4794417

[47]

Tagde A,Bouillez A.MUC1-C drives MYC in multiple myeloma.Blood2016;127:2587-97 PMCID:PMC4882805

[48]

Clapier CR,Cairns BR.Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes.Nat Rev Mol Cell Biol2017;18:407-22 PMCID:PMC8127953

[49]

Bracken AP,Verrijzer CP.Dangerous liaisons: interplay between SWI/SNF, NuRD, and polycomb in chromatin regulation and cancer.Genes Dev2019;33:936-59 PMCID:PMC6672049

[50]

Piunti A.The roles of polycomb repressive complexes in mammalian development and cancer.Nat Rev Mol Cell Biol2021;22:326-45

[51]

Rajabi H,Tagde A.MUC1-C activates EZH2 expression and function in human cancer cells.Sci Rep2017;7:7481 PMCID:PMC5547076

[52]

Hagiwara M,Yamashita N.MUC1-C activates the BAF (mSWI/SNF) complex in prostate cancer stem cells.Cancer Res2021;81:1111-22 PMCID:PMC8026569

[53]

Cenik BK.COMPASS and SWI/SNF complexes in development and disease.Nat Rev Genet2021;22:38-58

[54]

Hata T,Yamamoto M.Targeting MUC1-C inhibits TWIST1 signaling in triple-negative breast cancer.Mol Cancer Ther2019;18:1744-54 PMCID:PMC6774902

[55]

Bekkering S,Joosten LAB,Netea MG.Trained immunity: reprogramming innate immunity in health and disease.Annu Rev Immunol2021;39:667-93

[56]

Hagiwara M,Yamashita N.MUC1-C activates the PBAF chromatin remodeling complex in integrating redox balance with progression of human prostate cancer stem cells.Oncogene2021;40:4930-40 PMCID:PMC8321896

[57]

Bhattacharya A,Yamashita N.MUC1-C Dictates JUN and BAF-mediated chromatin remodeling at enhancer signatures in cancer stem Cells.Mol Cancer Res2022;

[58]

Hodges C,Crabtree GR.The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer.Cold Spring Harb Perspect Med2016;6:a026930 PMCID:PMC4968166

[59]

Hopson S.BAF180: Its Roles in DNA repair and consequences in cancer.ACS Chem Biol2017;12:2482-90

[60]

Porter EG,Chowdhury B.PBRM1 regulates stress response in epithelial cells.iScience2019;15:196-210 PMCID:PMC6514269

[61]

Eferl R.AP-1: a double-edged sword in tumorigenesis.Nat Rev Cancer2003;3:859-68

[62]

Deng W,Collier AJ.The transcription factor code in iPSC reprogramming.Curr Opin Genet Dev2021;70:89-96

[63]

Singhal N,Wu G.Chromatin-remodeling components of the baf complex facilitate reprogramming.Cell2010;141:943-55

[64]

Chronis C,Papp B.Cooperative binding of transcription factors orchestrates reprogramming.Cell2017;168:442-459.e20 PMCID:PMC5302508

[65]

Chen K,Xing G.Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming.EMBO J2020;39:e99165 PMCID:PMC6939195

[66]

King HW.The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells.Elife2017;6:e22631 PMCID:PMC5400504

[67]

Iurlaro M,Masoni F.Mammalian SWI/SNF continuously restores local accessibility to chromatin.Nat Genet2021;53:279-87

[68]

Marino MM,Russo R.Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF.J Biol Chem2019;294:861-73 PMCID:PMC6341399

[69]

Valletta M,Baglivo I.Exploring the interaction between the SWI/SNF chromatin remodeling complex and the Zinc finger factor CTCF.Int J Mol Sci2020;21:E8950 PMCID:PMC7728349

[70]

Vierbuchen T,Cowley CJ.AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection.Mol Cell2017;68:1067-1082.e12 PMCID:PMC5744881

[71]

Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem cell plasticity and dormancy in the development of cancer therapy resistance.Front Oncol2019;9:626 PMCID:PMC6636659

[72]

Miranda A,Zhang AW.Cancer stemness, intratumoral heterogeneity, and immune response across cancers.Proc Natl Acad Sci U S A2019;116:9020-9 PMCID:PMC6500180

[73]

Malta TM,Gentles AJ.Cancer genome atlas research networkmachine learning identifies stemness features associated with oncogenic dedifferentiation.Cell2018;173:338-354.e15 PMCID:PMC5902191

[74]

Quintanal-Villalonga Á,Yu HA.Lineage plasticity in cancer: a shared pathway of therapeutic resistance.Nat Rev Clin Oncol2020;17:360-71 PMCID:PMC7397755

[75]

Hagiwara M,Bhattacharya A.MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer.Oncoimmunology2022;11:2029298 PMCID:PMC8812775

[76]

Yamashita N,Fushimi A.MUC1-C integrates activation of the IFN-γ pathway with suppression of the tumor immune microenvironment in triple-negative breast cancer.J Immunother Cancer2021;9:e002115 PMCID:PMC7839859

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/