Tricking the tumour microenvironment into becoming our best rational drug design factory: reversal of immune suppression

Martin L. Ashdown

Journal of Cancer Metastasis and Treatment ›› 2022, Vol. 8 : 6

PDF
Journal of Cancer Metastasis and Treatment ›› 2022, Vol. 8:6 DOI: 10.20517/2394-4722.2022.01
review-article

Tricking the tumour microenvironment into becoming our best rational drug design factory: reversal of immune suppression

Author information +
History +
PDF

Abstract

The immune cellular components of the tumour microenvironment are a diverse group of cells that paradoxically are now appreciated to have a coordinated opposing duality of either promoting or retarding tumour growth. Manipulating this seemingly dynamic interaction for therapeutic benefit is a hotbed of much research. Recent findings in tumour immunology (both preclinical and clinical) build on more than a century of insights and provide a way forward to improving patient outcomes, long term survival and the predictability of “cures”. This opinion piece attempts to summarise some of these historical and contemporary insights with a view to describing eminently testable therapeutic solutions.

Keywords

Tumour microenvironments / immune suppression / regulatory T cells / immune modulation / reversal / plasticity / spatio-temporal

Cite this article

Download citation ▾
Martin L. Ashdown. Tricking the tumour microenvironment into becoming our best rational drug design factory: reversal of immune suppression. Journal of Cancer Metastasis and Treatment, 2022, 8: 6 DOI:10.20517/2394-4722.2022.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fishbein M.Progress in medical science-IV.Scientific American1926;134:26-7

[2]

The 2007-2008 President’s Cancer Panel Report. Available from: https://deainfo.nci.nih.gov/Advisory/pcp/archive/pcp07-08rpt/ExecSum.pdf [Last accessed on 25 Feb 2022]

[3]

Hall SS. Commotion in the blood. Henry Holt and Company. 1998. p. 249.

[4]

Beardsley T.A war not won.Scientific American1994;270:130-8

[5]

Tuma RS.Large trials, small gains: is change on the way?.J Natl Cancer Inst2010;102:1216-17, 1223

[6]

Hall SS. Commotion in the blood. Henry Holt and Company. 1998 p. 30.

[7]

Hall SS. Commotion in the blood. Henry Holt and Company. 1998 p. 123.

[8]

Janssen LME,Logsdon CD.The immune system in cancer metastasis: friend or foe?.J Immunother Cancer2017;5:79 PMCID:PMC5644253

[9]

Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development.Nat Rev Cancer2006;6:24-37

[10]

Burugu S,Nielsen TO.Emerging targets in cancer immunotherapy.Semin Cancer Biol2018;52:39-52

[11]

Greten FR.Inflammation and cancer: triggers, mechanisms, and consequences.Immunity2019;51:27-41 PMCID:PMC6831096

[12]

Lippitz BE.Cytokine patterns in patients with cancer: a systematic review.Lancet Oncol2013;14:e218-28

[13]

Lippitz BE.Cytokine patterns in cancer patients: a review of the correlation between interleukin 6 and prognosis.Oncoimmunology2016;5:e1093722 PMCID:PMC4910721

[14]

Ihde DC.Paraneoplastic syndromes.Hosp Pract (Off Ed)1987;22:105-12, 117

[15]

Maverakis E,Wehrli LN,Garcia MS.The etiology of paraneoplastic autoimmunity.Clin Rev Allergy Immunol2012;42:135-44

[16]

Whiteside TL.Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention.Semin Cancer Biol2006;16:3-15

[17]

Stewart TJ.Improving cancer immunotherapy by targeting tumor-induced immune suppression.Cancer Metastasis Rev2011;30:125-40

[18]

Davis MM.T-cell antigen receptor genes and T-cell recognition.Nature1988;334:395-402

[19]

Macdonald IK,Chapman CJ.Autoantibodies: opportunities for early cancer detection.Trends Cancer2017;3:198-213

[20]

Wu J,Song W.The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours.Autoimmun Rev2017;16:1270-81

[21]

Schumacher TN.Neoantigens in cancer immunotherapy.Science2015;348:69-74

[22]

Piersma SJ,van der Burg SH.Tumor-specific regulatory T cells in cancer patients.Hum Immunol2008;69:241-9

[23]

Chauhan R.Inflammatory markers in cancer: potential resources.Front Biosci (Schol Ed)2020;12:1-24

[24]

Hui L.Tumor microenvironment: sanctuary of the devil.Cancer Lett2015;368:7-13

[25]

Anderson NM.The tumor microenvironment.Curr Biol2020;30:R921-5 PMCID:PMC8194051

[26]

Quail DF.Microenvironmental regulation of tumor progression and metastasis.Nat Med2013;19:1423-37 PMCID:PMC3954707

[27]

Yuan R,Geng H.Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis.Int Immunopharmacol2017;49:30-7

[28]

Poh AR.Targeting macrophages in cancer: from bench to bedside.Front Oncol2018;8:49 PMCID:PMC5858529

[29]

Kumar V,Tcyganov E.The nature of myeloid-derived suppressor cells in the tumor microenvironment.Trends Immunol2016;37:208-20 PMCID:PMC4775398

[30]

Berraondo P,Ochoa MC.Cytokines in clinical cancer immunotherapy.Br J Cancer2019;120:6-15 PMCID:PMC6325155

[31]

Li L,Cai T.Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment.Int Immunopharmacol2020;88:106939

[32]

Hoekstra ME,Schumacher TN.Modulation of the tumor micro-environment by CD8+ T cell-derived cytokines.Curr Opin Immunol2021;69:65-71 PMCID:PMC7610766

[33]

Arenas-Ramirez N,Boyman O.Interleukin-2: biology, design and application.Trends Immunol2015;36:763-77

[34]

Zaidi MR.The interferon-gamma paradox in cancer.J Interferon Cytokine Res2019;39:30-8 PMCID:PMC6350411

[35]

Montfort A,Levade T,Meyer N.The TNF paradox in cancer progression and immunotherapy.Front Immunol2019;10:1818 PMCID:PMC6685295

[36]

Coventry BJ.The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses.Cancer Manag Res2012;4:215-21 PMCID:PMC3421468

[37]

Sakaguchi S,Asano M,Toda M.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J Immunol1995;155:1151-64

[38]

Kamada T,Tay C.PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer.Proc Natl Acad Sci U S A2019;116:9999-10008 PMCID:PMC6525547

[39]

Marangoni F,Corsini M.Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop.Cell2021;184:3998-4015.e19 PMCID:PMC8664158

[40]

Gratz IK,Maurano MM.Cutting edge: self-antigen controls the balance between effector and regulatory T cells in peripheral tissues.J Immunol2014;192:1351-5 PMCID:PMC3925257

[41]

Pinheiro DF,Maurano MM.Cutting edge: tissue antigen expression levels fine-tune T cell differentiation decisions in vivo.J Immunol2020;205:2577-82 PMCID:PMC8606034

[42]

Busse D,Hobiger K.Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments.Proc Natl Acad Sci U S A2010;107:3058-63 PMCID:PMC2840293

[43]

McNally A,Sparwasser T,Steptoe RJ.CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis.Proc Natl Acad Sci U S A2011;108:7529-34 PMCID:PMC3088596

[44]

Challa DK,Lo ST,Ward ES.Antigen dynamics govern the induction of CD4(+) T cell tolerance during autoimmunity.J Autoimmun2016;72:84-94

[45]

Pradeu T.The discontinuity theory of immunity.Sci Immunol2016;1:AAG0479 PMCID:PMC5321532

[46]

Pradeu T.The danger theory: 20 years later.Front Immunol2012;3:287 PMCID:PMC3443751

[47]

Kareva I.Immune suppression in pregnancy and cancer: parallels and insights.Transl Oncol2020;13:100759 PMCID:PMC7191218

[48]

Bruno V,Baci D.Endometrial cancer immune escape mechanisms: let us learn from the fetal-maternal interface.Front Oncol2020;10:156 PMCID:PMC7080858

[49]

Nottke A. Taming the cycle: how does the pill work? Available from: https://sitn.hms.harvard.edu/flash/2008/issue40/ [Last accessed on 25 Feb 2022]

[50]

Flemming A.Cancer: tumour-specific ablation of Treg cells induces anticancer response.Nat Rev Drug Discov2016;15:676-7

[51]

Ohue Y.Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target?.Cancer Sci2019;110:2080-9 PMCID:PMC6609813

[52]

Boyman O,Raeber ME.Modulation of T cell responses by IL-2 and IL-2 complexes.Clin Exp Rheumatol2015;33:S54-7

[53]

Tran E,Rosenberg SA.‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations.Nat Immunol2017;18:255-62 PMCID:PMC6295671

[54]

Shimizu K,Okada M,Fujii SI.Immune suppression and reversal of the suppressive tumor microenvironment.Int Immunol2018;30:445-54

[55]

Ahmed A.Targeting immunogenic cell death in cancer.Mol Oncol2020;14:2994-3006 PMCID:PMC7718954

[56]

Vaes RDW,Vooijs M.Biomarkers of radiotherapy-induced immunogenic cell death.Cells2021;10:930 PMCID:PMC8073519

[57]

Storozynsky Q.The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer.Int J Mol Sci2020;21:8877 PMCID:PMC7700321

[58]

McLaughlin M,Pedersen M.Inflammatory microenvironment remodelling by tumour cells after radiotherapy.Nat Rev Cancer2020;20:203-17

[59]

Xu W,Menzies AM.Intratumoural immunotherapies in oncology.Eur J Cancer2020;127:1-11

[60]

Chavez M,Ingham ES.Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation.Theranostics2018;8:3611-28 PMCID:PMC6037035

[61]

Yip YK,Oppenheim JD.Stimulation of human gamma interferon production by diterpene esters.Infect Immun1981;34:131-9 PMCID:PMC350832

[62]

Ribas A,Puzanov I.Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy.Cell2017;170:1109-19.e10 PMCID:PMC8034392

[63]

Tubin S,Salerno G,Yan W.Mono-institutional phase 2 study of innovative Stereotactic Body RadioTherapy targeting PArtial Tumor HYpoxic (SBRT-PATHY) clonogenic cells in unresectable bulky non-small cell lung cancer: profound non-targeted effects by sparing peri-tumoral immune microenvironment.Radiat Oncol2019;14:212 PMCID:PMC6878646

[64]

Markovsky E,Samstein RM.An antitumor immune response is evoked by partial-volume single-dose radiation in 2 murine models.Int J Radiat Oncol Biol Phys2019;103:697-708 PMCID:PMC6764416

[65]

Rodríguez-Ruiz ME,Melero I,Demaria S.Immunological mechanisms responsible for radiation-induced abscopal effect.Trends Immunol2018;39:644-55 PMCID:PMC6326574

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/