The antiangiogenic phloroglucinol hyperforin inhibits the secretion of proMMP-2, proMMP-9 and VEGF-A during apoptosis of primary acute myeloid leukemia cells

Faten Merhi , Ruoping Tang , Ollivier Legrand , Florence Nguyen-Khac , Santos A. Susin , Brigitte Bauvois

Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7 : 42

PDF
Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7:42 DOI: 10.20517/2394-4722.2021.80
review-article

The antiangiogenic phloroglucinol hyperforin inhibits the secretion of proMMP-2, proMMP-9 and VEGF-A during apoptosis of primary acute myeloid leukemia cells

Author information +
History +
PDF

Abstract

Aim: Angiogenesis is observed in acute myeloid leukemia (AML). AML cells abnormally proliferate and are resistant to death. Positive regulators of angiogenesis, VEGF-A and matrix metalloproteinases (MMPs) 2 and 9 are markers of disease status in AML. The natural phloroglucinol hyperforin (HF) displays antitumoral properties of potential pharmacological interest. Herein, we investigated the effects of HF on MMP-2/9 and VEGF-A expression and survival of primary AML cells.

Methods: Blood and bone marrow samples were collected in 45 patients with distinct subtypes defined by French American British classification, i.e., M0, M1, M2, M3, M4, and M5. Levels of MMPs and VEGF-A in leukemic blood cells and culture supernatants were determined by RT-PCR, ELISA, and gelatin zymography (MMPs). The balance between cell death and survival was assessed by flow cytometry with analysis of phosphatidylserine externalization and caspase-3 activation.

Results: The administration of HF promoted a caspase-associated apoptosis in primary AML blasts (from blood and bone marrow), but not normal blood cells and monocytes. In addition, HF inhibited the levels of secreted proMMP-2, proMMP-9, and VEGF-A without altering transcripts. The induction of apoptosis by HF significantly paralleled the inhibition of MMP-2/9 and VEGF-A release by HF. No differences were seen in response to the deleterious effects of HF between AML cells of distinct subtypes.

Conclusion: Our results suggest that HF, through its proapoptotic and potential antiangiogenic properties (by inhibiting MMP-2/9 and VEGF-A) on primary AML cells, might be a useful experimental agent, in combination with existing drugs, for new therapeutic approaches in the treatment of this incurable disease.

Keywords

Acute myeloid leukemia / apoptosis / hyperforin / matrix metalloproteinase / VEGF / secretion

Cite this article

Download citation ▾
Faten Merhi, Ruoping Tang, Ollivier Legrand, Florence Nguyen-Khac, Santos A. Susin, Brigitte Bauvois. The antiangiogenic phloroglucinol hyperforin inhibits the secretion of proMMP-2, proMMP-9 and VEGF-A during apoptosis of primary acute myeloid leukemia cells. Journal of Cancer Metastasis and Treatment, 2021, 7: 42 DOI:10.20517/2394-4722.2021.80

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Testa U,Castelli G.Endothelial progenitors in the tumor microenvironment.Adv Exp Med Biol2020;1263:85-115

[2]

Ribatti D,Roccaro AM,Nico B.Hematopoietic cancer and angiogenesis.Stem Cells Dev2004;13:484-95

[3]

Haouas H.Angiogenesis and acute myeloid leukemia.Hematology2014;19:311-23

[4]

Najafabadi M, Shamsasenjan K, Akbarzadehalaleh P. Angiogenesis status in patients with acute myeloid leukemia: from diagnosis to post-hematopoietic stem cell transplantation.Int J Organ Transplant Med2017;8:57-67 PMCID:PMC5549002

[5]

Bertolini F,Gobbi A.The thin red line: angiogenesis in normal and malignant hematopoiesis.Exp Hematol2000;28:993-1000

[6]

Moehler TM,Ho AD.Angiogenesis in hematologic malignancies.Ann Hematol2001;80:695-705

[7]

Rajkumar SV,Tefferi A.A review of angiogenesis and anti-angiogenic therapy in hematologic malignancies.J Hematother Stem Cell Res2002;11:33-47

[8]

Bauvois B.New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression.Biochim Biophys Acta-Reviews on Cancer2012;1825:29-36

[9]

Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis.Am J Pathol2012;181:1895-9 PMCID:PMC3506216

[10]

Cabral-Pacheco GA,Castruita-De la Rosa C.The roles of matrix metalloproteinases and their inhibitors in human diseases.Int J Mol Sci2020;21 PMCID:PMC7767220

[11]

Murphy G.Localizing matrix metalloproteinase activities in the pericellular environment.Febs J2010;278:2-15 PMCID:PMC3004722

[12]

Klein T.Physiology and pathophysiology of matrix metalloproteases.Amino Acids2011;41:271-90 PMCID:PMC3102199

[13]

Chen Q,Yang F,Xiao Q.Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling.Mediators Inflamm2013;2013:928315 PMCID:PMC3694547

[14]

Kessenbrock K,Werb Z.Matrix metalloproteinases: regulators of the tumor microenvironment.Cell2010;141:52-67 PMCID:PMC2862057

[15]

Medina MA,Amores-Sánchez MI.Hyperforin: more than an antidepressant bioactive compound?.Life Sci2006;79:105-11

[16]

McGrowder DA,Nwokocha CR.Medicinal herbs used in traditional management of breast cancer: mechanisms of action.Medicines (Basel)2020;7:47 PMCID:PMC7460502

[17]

Varghese R.Natural products as anticancer agents.Curr Drug Targets2020;

[18]

Park SH,Lee S,Kim B.Therapeutic potential of natural products in treatment of cervical cancer: a review.Nutrients2021;13:154 PMCID:PMC7824868

[19]

Quiney C,Salanoubat C,Kolb JP.Hyperforin, a new lead compound against the progression of cancer and leukemia?.Leukemia2006;20:1519-25

[20]

Borrelli F.Herb-drug interactions with St John’s wort (Hypericum perforatum): an update on clinical observations.Aaps J2009;11:710-27 PMCID:PMC2782080

[21]

Feisst C,Rakonjac M.Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo.Cell Mol Life Sci2009;66:2759-71

[22]

Menegazzi M,Novelli M.Anti-tumor activity of hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics.Antioxidants (Basel)2020;10:18 PMCID:PMC7824709

[23]

Hostanska K,Bommer S,Saller R.Hyperforin a constituent of St John’s wort (Hypericum perforatum L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines.Eur J Pharm Biopharm2003;56:121-32

[24]

Quiney C,Faussat AM.Pro-apoptotic properties of hyperforin in leukemic cells from patients with B-cell chronic lymphocytic leukemia.Leukemia2006;20:491-7

[25]

Liu JY,Wang DM.Induction of apoptosis in K562 cells by dicyclohexylammonium salt of hyperforin through a mitochondrial-related pathway.Chem Biol Interact2011;190:91-101

[26]

Merhi F,Piedfer M.Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells.PLoS One2011;6:e25963 PMCID:PMC3188562

[27]

Liu YC,Hsieh JH.Hyperforin Induces apoptosis through extrinsic/intrinsic pathways and inhibits NF-ĸB-modulated survival and invasion potential in bladder cancer.In Vivo2019;33:1865-77 PMCID:PMC6899093

[28]

Billard C,Bauvois B.Mechanistic insights into the antileukemic activity of hyperforin.Curr Cancer Drug Targets2013;13:1-10

[29]

Lorusso G,Sogno I.Mechanisms of Hyperforin as an anti-angiogenic angioprevention agent.Eur J Cancer2009;45:1474-84

[30]

Rothley M,Thiele W.Hyperforin and aristoforin inhibit lymphatic endothelial cell proliferation in vitro and suppress tumor-induced lymphangiogenesis in vivo.Int J Cancer2009;125:34-42

[31]

Dell’Aica I,Biggin S.Matrix proteases, green tea, and St. John’s wort: biomedical research catches up with folk medicine.Clin Chim Acta2007;381:69-77

[32]

Quiney C,Mirshahi P,Kolb JP.Hyperforin inhibits MMP-9 secretion by B-CLL cells and microtubule formation by endothelial cells.Leukemia2006;20:583-9

[33]

Allegra A,Spagnolo EV,Gangemi S.Antiproliferative effects of St. John’s Wort, its derivatives, and other hypericum species in hematologic malignancies.Int J Mol Sci2020;22 PMCID:PMC7795730

[34]

Swords R,Giles F.Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia.Leukemia2012;26:2176-85

[35]

Rodriguez-Ariza A,Aranda E.VEGF targeted therapy in acute myeloid leukemia.Crit Rev Oncol Hematol2011;80:241-56

[36]

Nair R,Baldauf HM.New strategies to treat AML: novel insights into AML survival pathways and combination therapies.Leukemia2021;35:299-311

[37]

Cucchi DGJ,Ossenkoppele GJ.Two decades of targeted therapies in acute myeloid leukemia.Leukemia2021;35:651-60

[38]

Estey E.New treatments for acute myeloid leukemia: how much has changed?.Leukemia2021;35:45-6

[39]

Hussong JW,Shami PJ.Evidence of increased angiogenesis in patients with acute myeloid leukemia.Blood2000;95:309-13

[40]

Padró T,Ruiz S.Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR (VEGFR-2) in the bone marrow of patients with acute myeloid leukemia.Leukemia2002;16:1302-10

[41]

Fiedler W,Ergün S.Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia.Blood1997;89:1870-5

[42]

Ghannadan M,Simonitsch I.Immunohistochemical detection of VEGF in the bone marrow of patients with acute myeloid leukemia. Correlation between VEGF expression and the FAB category.Am J Clin Pathol2003;119:663-71

[43]

Bont ES, Fidler V, Meeuwsen T, Scherpen F, Hählen K, Kamps WA. Vascular endothelial growth factor secretion is an independent prognostic factor for relapse-free survival in pediatric acute myeloid leukemia patients.Clin Cancer Res2002;8:2856-61

[44]

Aguayo A,Manshouri T.Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes.Blood2000;96:2240-5

[45]

Janowska-Wieczorek A.Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells.Br J Haematol1999;105:402-11

[46]

Ries C,Zang C,Petrides PE.Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes.Clin Cancer Res1999;5:1115-24

[47]

Chaudhary AK,Ghosh K,Nadkarni AH.Secretion and expression of matrix metalloproteinase-2 and 9 from bone marrow mononuclear cells in myelodysplastic syndrome and acute myeloid leukemia.Asian Pac J Cancer Prev2016;17:1519-29

[48]

Reikvam H,Oyan AM,Kittang AO.Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: release profile and pharmacological modulation.Eur J Haematol2009;84:239-51

[49]

King ME.Recent developments in acute myelogenous leukemia therapy.Oncologist2007;12 Suppl 2:14-21

[50]

Bauvois B,Tang R,Kolb JP.Types I and II interferons upregulate the costimulatory CD80 molecule in monocytes via interferon regulatory factor-1.Biochem Pharmacol2009;78:514-22

[51]

Bouchet S,Fava F,Bauvois B.The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13.Oncotarget2016;7:19445-67 PMCID:PMC4991394

[52]

Bauvois B,Mathiot C.Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by interferons.Leukemia2002;16:791-8

[53]

Bauvois B,Jondreville L.Relation of neutrophil gelatinase-associated lipocalin overexpression to the resistance to apoptosis of tumor B cells in chronic lymphocytic leukemia.Cancers (Basel)2020;12:2124 PMCID:PMC7465759

[54]

Trocme C,Berthier S,Zaoui P.Human B lymphocytes synthesize the 92-kDa gelatinase, matrix metalloproteinase-9.J Biol Chem1998;273:20677-84

[55]

Munaut C,Hougrand O,Boniver J.Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas.Int J Cancer2003;106:848-55

[56]

Bauvois B,Jondreville L,Nguyen-Khac F.Activation of interferon signaling in chronic lymphocytic leukemia cells contributes to apoptosis resistance via a JAK-Src/STAT3/Mcl-1 signaling pathway.Biomedicines2021;9:188 PMCID:PMC7918075

[57]

Wang ZB,Cui YF.Pathways to caspase activation.Cell Biol Int2005;29:489-96

[58]

Paupert J,Demur C,Muller C.Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features.Cell Cycle2008;7:1047-53

[59]

Toth M,Fridman R.Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells.Cancer Res1997;57:3159-67

[60]

Ogata Y,Nagase H.Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9.J Biol Chem1992;267:3581-4

[61]

Knäuper V,López-Otin C.Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13).Eur J Biochem1997;248:369-73

[62]

Aggarwal BB,Harikumar KB.Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship?.Ann N Y Acad Sci2009;1171:59-76 PMCID:PMC3141289

[63]

Tolomeo M.The multifaced role of STAT3 in cancer and its implication for anticancer therapy.Int J Mol Sci2021;22:603 PMCID:PMC7826746

[64]

Vandooren J,Opdenakker G.Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade.Crit Rev Biochem Mol Biol2013;48:222-72

[65]

Choueiri TK,Jr .Targeting the HIF2-VEGF axis in renal cell carcinoma.Nat Med2020;26:1519-30

[66]

Aref S,Mansy S.Prognostic relevance of circulating matrix metalloproteinase-2 in acute myeloid leukaemia patients.Hematol Oncol2007;25:121-6

[67]

Martelli AM,Tabellini G.Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia.Leukemia2006;20:911-28

[68]

Dona M,Pezzato E.Hyperforin inhibits cancer invasion and metastasis.Cancer Res2004;64:6225-32

[69]

Kampen KR,de Bont ES.Vascular endothelial growth factor signaling in acute myeloid leukemia.Cell Mol Life Sci2013;70:1307-17

[70]

Wiszniak S.Exploring the intracrine functions of VEGF-A.Biomolecules2021;11:128 PMCID:PMC7835749

[71]

Redondo-Munoz J,Terol MJ.Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain.Cancer Cell2010;17:160-72

[72]

Stefanidakis M,Jaalouk DE.Role of leukemia cell invadosome in extramedullary infiltration.Blood2009;114:3008-17 PMCID:PMC2756207

[73]

Kortlepel K,Gottlieb DJ.Human acute myeloid leukaemia cells express adhesion proteins and bind to bone marrow fibroblast monolayers and extracellular matrix proteins.Leukemia1993;7:1174-9

[74]

Sell TS,Flockerzi V.Protonophore properties of hyperforin are essential for its pharmacological activity.Sci Rep2014;4:7500 PMCID:PMC4266863

[75]

Mollinedo F.Lipid rafts as major platforms for signaling regulation in cancer.Adv Biol Regul2015;57:130-46

[76]

George KS.Lipid raft: a floating island of death or survival.Toxicol Appl Pharmacol2012;259:311-9 PMCID:PMC3299927

[77]

Nichols B.Caveosomes and endocytosis of lipid rafts.J Cell Sci2003;116:4707-14

[78]

Salaün C,Chamberlain LH.Lipid rafts and the regulation of exocytosis.Traffic2004;5:255-64 PMCID:PMC2394575

[79]

Hanzal-Bayer MF.Lipid rafts and membrane traffic.FEBS Lett2007;581:2098-104

[80]

Ouweneel AB,Sorci-Thomas MG.The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes.J Lipid Res2020;61:676-86 PMCID:PMC7193959

[81]

Dell’Agli M,Galli G.Dietary polyphenols and regulation of gelatinase expression and activity.Thromb Haemost2005;93:751-60

[82]

Coleman DT,Cardelli JA.Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-Met expression independent of proteosomal/lysosomal degradation.Mol Cancer Ther2009;8:214-24 PMCID:PMC2741738

[83]

Duhon D,Coleman DT.The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells.Mol Carcinog2010;49:739-49

[84]

Mocanu MM,Georgescu L.Epigallocatechin 3-O-gallate induces 67 kDa laminin receptor-mediated cell death accompanied by downregulation of ErbB proteins and altered lipid raft clustering in mammary and epidermoid carcinoma cells.J Nat Prod2014;77:250-7

[85]

Overall CM.Towards third generation matrix metalloproteinase inhibitors for cancer therapy.Br J Cancer2006;94:941-6 PMCID:PMC2361222

[86]

Sela-Passwell N,Shoham T.Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition?.Biochim Biophys Acta2010;1803:29-38

[87]

Raeeszadeh-Sarmazdeh M,Hritz BG.Metalloproteinases and their inhibitors: potential for the development of new therapeutics.Cells2020;9:1313 PMCID:PMC7290391

[88]

Bjorklund M,Koivunen E.Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion.J Biol Chem2004;279:29589-97

[89]

Mantuano E,Li X.The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein.J Neurosci2008;28:11571-82 PMCID:PMC3837707

[90]

Dufour A,Sampson NS,Cao J.Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides.J Biol Chem2010;285:35944-56 PMCID:PMC2975217

[91]

Ollauri-Ibáñez C.Use of antiangiogenic therapies in pediatric solid tumors.Cancers (Basel)2021;13 PMCID:PMC7827326

[92]

Jayson GC,Ellis LM.Antiangiogenic therapy in oncology: current status and future directions.Lancet2016;388:518-29

[93]

Schempp CM,Kirkin V.Hyperforin acts as an angiogenesis inhibitor.Planta Med2005;71:999-1004

[94]

Wurglics M.Hypericum perforatum: a ‘modern’ herbal antidepressant: pharmacokinetics of active ingredients.Clin Pharmacokinet2006;45:449-68

[95]

Ang CY,Heinze TM.Instability of St. John’s wort (Hypericum perforatum L.) and degradation of hyperforin in aqueous solutions and functional beverage.J Agric Food Chem2004;52:6156-64

[96]

Chen Y,Negishi M.Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor.J Pharmacol Exp Ther2004;308:495-501

[97]

Whitten DL,Hawrelak JA.The effect of St John’s wort extracts on CYP3A: a systematic review of prospective clinical trials.Br J Clin Pharmacol2006;62:512-26 PMCID:PMC1885170

[98]

Biber A,Romer A.Oral bioavailability of hyperforin from hypericum extracts in rats and human volunteers.Pharmacopsychiatry1998;31 Suppl 1:36-43

[99]

Schulz HU,Bassler D.Investigation of pharmacokinetic data of hypericin, pseudohypericin, hyperforin and the flavonoids quercetin and isorhamnetin revealed from single and multiple oral dose studies with a hypericum extract containing tablet in healthy male volunteers.Arzneimittelforschung2005;55:561-8

[100]

Franklin M,McGavin C.Neuroendocrine evidence for dopaminergic actions of hypericum extract (LI 160) in healthy volunteers.Biol Psychiatry1999;46:581-4

[101]

Gartner M,Simon JC,Sleeman JP.Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.Chembiochem2005;6:171-7

[102]

Martinez-Poveda B,Bombardelli E,Medina MA.Tetrahydrohyperforin and octahydrohyperforin are two new potent inhibitors of angiogenesis.PLoS One2010;5:e9558 PMCID:PMC2835552

[103]

Chauvet S,Boukherroub R.Lipid nanocapsules containing the non-ionic surfactant Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells.Neuropharmacology2015;99:726-34

[104]

Nosratabadi R,Sankian M,Mahmoudi M.Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells.Nanomedicine2016;12:1961-71

[105]

Füller J,Gaid M,Müller-Goymann CC.Stabilization of hyperforin dicyclohexylammonium salt with dissolved albumin and albumin nanoparticles for studying hyperforin effects on 2D cultivation of keratinocytes in vitro.Eur J Pharm Biopharm2018;126:115-22

[106]

Traeger A,Shkodra-Pula B.Improved bioactivity of the natural product 5-lipoxygenase inhibitor hyperforin by encapsulation into polymeric nanoparticles.Mol Pharm2020;17:810-6

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/