Review of pharmacological inhibition of thyroid cancer metabolism

Cole D. Davidson , Frances E. Carr

Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7 : 45

PDF
Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7:45 DOI: 10.20517/2394-4722.2021.77
review-article

Review of pharmacological inhibition of thyroid cancer metabolism

Author information +
History +
PDF

Abstract

Thyroid cancer (TC) is the most common malignancy of the endocrine system and has been rapidly increasing in incidence over the past few decades. Aggressive TCs metastasize quickly and often levy poor prognoses, as they are frequently resistant to first-line treatment options. Patients diagnosed with aggressive, dedifferentiated TC have a prognosis of under a year with the most current treatment modalities. Like many cancers, TCs also exhibit altered cell metabolism, which enhances the cell’s ability to generate energy, protect against reactive oxygen species, and synthesize macromolecules such as lipids, proteins, and nucleotides for proliferation. Genetic and enzyme profiling of TC tissues and cell lines have uncovered several dysregulated metabolic pathways such as glycolysis, the pentose phosphate pathway, glutamine metabolism, and pyrimidine synthesis. These aberrations are most often due to overexpression of rate-limiting enzymes or metabolite transporters. Metabolic pathways pose attractive therapeutic targets in aggressive TC and may serve to work in tandem with standard therapeutics such as kinase inhibitors depending on the genetic, metabolic, and signaling backgrounds of individual tumors. Further studies are needed to clearly delineate altered metabolic targets across TC subtypes for implementing therapeutic metabolic inhibitors that have shown success in other aggressive tumors.

Keywords

Thyroid cancer / tumor metabolism / metabolic inhibitors / Warburg effect / cell signaling

Cite this article

Download citation ▾
Cole D. Davidson, Frances E. Carr. Review of pharmacological inhibition of thyroid cancer metabolism. Journal of Cancer Metastasis and Treatment, 2021, 7: 45 DOI:10.20517/2394-4722.2021.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xing M.Molecular pathogenesis and mechanisms of thyroid cancer.Nat Rev Cancer2013;13:184-99 PMCID:PMC3791171

[2]

Lim H,Sosa JA,Kitahara CM.Trends in thyroid cancer incidence and mortality in the United States, 1974-2013.JAMA2017;317:1338-48 PMCID:PMC8216772

[3]

Valerio L,Giani C.Targeted therapy in thyroid cancer: State of the art.Clin Oncol (R Coll Radiol)2017;29:316-24

[4]

Siegel RL,Jemal A.Cancer statistics, 2020.CA Cancer J Clin2020;70:7-30

[5]

Kebebew E,Bauer J.The prevalence and prognostic value of BRAF mutation in thyroid cancer.Ann Surg2007;246:466-70; discussion 470 PMCID:PMC1959359

[6]

Shinohara M,Saji M.AKT in thyroid tumorigenesis and progression.Endocrinology2007;148:942-7

[7]

Liu Z,Ji M.Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers.J Clin Endocrinol Metab2008;93:3106-16

[8]

Landa I,Chan TA.Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease.J Clin Endocrinol Metab2013;98:E1562-6 PMCID:PMC3763971

[9]

Landa I,Boucai L.Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers.J Clin Invest2016;126:1052-66 PMCID:PMC4767360

[10]

Jayarangaiah A,Brown J.Therapeutic options for advanced thyroid cancer.Int J Clin Endocrinol Metab2019;5:26-34 PMCID:PMC6839707

[11]

Pereira M,Hallanger Johnson J.Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations.Thyroid2020;30:1132-40

[12]

Zarou MM,Vignir Helgason G.Folate metabolism: a re-emerging therapeutic target in haematological cancers.Leukemia2021;35:1539-51 PMCID:PMC8179844

[13]

Ferreira LM,Dumont JE.Metabolic reprogramming of the tumor.Oncogene2012;31:3999-4011

[14]

DeBerardinis RJ.Fundamentals of cancer metabolism.Sci Adv2016;2:e1600200 PMCID:PMC4928883

[15]

Nelson DL,Cox MM. Lehninger principles of biochemistry. London: Macmillan; 2008.

[16]

Haber RS,Pritsker A,Burstein DE.GLUT1 glucose transporter expression in benign and malignant thyroid nodules.Thyroid1997;7:363-7

[17]

Jóźwiak P,Bryś M.Glucose-dependent glucose transporter 1 expression and its impact on viability of thyroid cancer cells.Oncol Rep2015;33:913-20

[18]

Coelho RG,Carvalho DP.Metabolic reprogramming in thyroid carcinoma.Front Oncol2018;8:82 PMCID:PMC5876306

[19]

Heydarzadeh S,Daneshpoor M.Regulators of glucose uptake in thyroid cancer cell lines.Cell Commun Signal2020;18:83 PMCID:PMC7268348

[20]

Suh HY,Paeng JC,Chung JK.Comprehensive gene expression analysis for exploring the association between glucose metabolism and differentiation of thyroid cancer.BMC Cancer2019;19:1260 PMCID:PMC6937781

[21]

Ciampi R,Romei C.Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors.Mol Cell Endocrinol2008;291:57-62

[22]

Nomura M,Nagata N.Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells.Biol Pharm Bull2008;31:1403-9

[23]

Maurya AK.PI-103 and quercetin attenuate PI3K-AKT signaling pathway in T-cell lymphoma exposed to hydrogen peroxide.PLoS One2016;11:e0160686 PMCID:PMC4975451

[24]

Hamilton KE,Gunnink LK.Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.Biochimie2018;151:107-14 PMCID:PMC6035882

[25]

Mutlu Altundağ E,Yılmaz AM.Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells.J Thyroid Res2016;2016:9843675 PMCID:PMC4745605

[26]

Ruan M,Dong Q.Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary thyroid cancer.J Clin Endocrinol Metab2015;100:1771-9

[27]

Reckzeh ES,Schwalfenberg M.Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth.Cell Chem Biol2019;26:1214-1228.e25

[28]

Nahm JH,Koo JS.Glycolysis-related protein expression in thyroid cancer.Tumour Biol2017;39:1010428317695922

[29]

Sandulache VC,Wang Y.Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation.Mol Cancer Ther2012;11:1373-80 PMCID:PMC3856684

[30]

Wang SY,Shieh DB.2-Deoxy-d-Glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells.PLoS One2015;10:e0130959 PMCID:PMC4489888

[31]

Bikas A,Patel A.Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.Endocr Relat Cancer2015;22:919-32

[32]

Dima M,Antico-Arciuch VG.Establishment and characterization of cell lines from a novel mouse model of poorly differentiated thyroid carcinoma: powerful tools for basic and preclinical research.Thyroid2011;21:1001-7 PMCID:PMC3162646

[33]

O'Sullivan D,Pearce EJ.Metabolic interventions in the immune response to cancer.Nat Rev Immunol2019;19:324-35

[34]

Patel CH,Horton MR.Targeting metabolism to regulate immune responses in autoimmunity and cancer.Nat Rev Drug Discov2019;18:669-88

[35]

King, M. Integrative medical biochemistry: examination and board review. McGraw-Hill; 2014.

[36]

Kumagai S,Hasumi K.Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells.Biochem Biophys Res Commun2008;365:362-8

[37]

Su X,Yang Q.Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms.Theranostics2019;9:4461-73 PMCID:PMC6599666

[38]

Chen M,Li Y.GC-MS-based metabolomic analysis of human papillary thyroid carcinoma tissue.Int J Mol Med2015;36:1607-14

[39]

Yu W,Huang R,Ye M.SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive oxygen species.Onco Targets Ther2019;12:2861-8 PMCID:PMC6489652

[40]

Vizin T.Gamma-enolase: a well-known tumour marker, with a less-known role in cancer.Radiol Oncol2015;49:217-26 PMCID:PMC4577217

[41]

Mazurek S.Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells.Int J Biochem Cell Biol2011;43:969-80

[42]

Chen X,Yu D.Protein kinase function of pyruvate kinase M2 and cancer.Cancer Cell Int2020;20:523 PMCID:PMC7597019

[43]

Zhang Z,Liu Y,Sun L.PKM2, function and expression and regulation.Cell Biosci2019;9 PMCID:PMC6595688

[44]

Yang J,Liu X,Luo R.Synergistic allosteric mechanism of fructose-1,6-bisphosphate and serine for pyruvate kinase M2 via dynamics fluctuation network analysis.J Chem Inf Model2016;56:1184-92 PMCID:PMC5115163

[45]

Chaneton B,Zheng L.Serine is a natural ligand and allosteric activator of pyruvate kinase M2.Nature2012;491:458-62 PMCID:PMC3894725

[46]

Keller KE,Dwyer ZW.SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells.Mol Cell2014;53:700-9 PMCID:PMC4000728

[47]

Yang Q,Guan H,Hou P.Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways.J Clin Endocrinol Metab2013;98:E1909-17

[48]

Zhao X,Hu J.Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis.Sci Rep2018;8:14517 PMCID:PMC6162216

[49]

Feng C,Wang C.Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer.J Clin Endocrinol Metab2013;98:E1524-33

[50]

Gao Y,Yang XA.Mitochondrial metabolism is inhibited by the HIF1α-MYC-PGC-1β axis in BRAF V600E thyroid cancer.FEBS J2019;286:1420-36

[51]

Mirebeau-Prunier D,Jacques C.Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors.PLoS One2013;8:e58683 PMCID:PMC3596295

[52]

Kachel P,Sekulla C,Dralle H.Phosphorylation of pyruvate kinase M2 and lactate dehydrogenase A by fibroblast growth factor receptor 1 in benign and malignant thyroid tissue.BMC Cancer2015;15:140 PMCID:PMC4393606

[53]

Coelho RG,Cavalcanti de Albuquerque JP,Carvalho DP.Differential glycolytic profile and Warburg effect in papillary thyroid carcinoma cell lines.Oncol Rep2016;36:3673-81

[54]

Gill KS,Hamilton J.Thyroid cancer metabolism: a review.J Thyroid Disord Ther2016;5:200 PMCID:PMC4874252

[55]

Johnson JM,Cotzia P.Mitochondrial metabolism as a treatment target in anaplastic thyroid cancer.Semin Oncol2015;42:915-22 PMCID:PMC4663018

[56]

Fu Y,Yin S.The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy.Oncotarget2017;8:57813-25 PMCID:PMC5593685

[57]

Rousset M,Fogh J.Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.Cancer Res1981;41:1165-70

[58]

Zois CE.Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.J Mol Med (Berl)2016;94:137-54 PMCID:PMC4762924

[59]

Shulman RG.The glycogen shunt maintains glycolytic homeostasis and the warburg effect in cancer.Trends Cancer2017;3:761-7

[60]

Dauer P.New roles for glycogen in tumor progression.Trends Cancer2019;5:396-9

[61]

Ahn CS.Glycogen metabolism of the thyroid.Endocrinology1971;88:1341-8

[62]

Carcangiu ML,Rosai J.Clear cell change in primary thyroid tumors. A study of 38 cases.Am J Surg Pathol1985;9:705-22

[63]

Pelletier J,Gounon P,Pouysségur J.Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival.Front Oncol2012;2:18 PMCID:PMC3355943

[64]

Adeva-Andany MM,Donapetry-García C,Ameneiros-Rodríguez E.Glycogen metabolism in humans.BBA Clin2016;5:85-100 PMCID:PMC4802397

[65]

Andersen B,Westergaard N.Inhibition of glycogenolysis in primary rat hepatocytes by 1, 4-dideoxy-1,4-imino-D-arabinitol.Biochem J1999;342 Pt 3:545-50 PMCID:PMC1220495

[66]

Jakobsen P,Kristiansen M.Iminosugars: potential inhibitors of liver glycogen phosphorylase.2001;9:733-44

[67]

Martin WH,Armento SJ.Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo.Proc Natl Acad Sci U S A1998;95:1776-81 PMCID:PMC19188

[68]

Schnier JB,Monks A,Bradbury E.Inhibition of glycogen phosphorylase (GP) by CP-91,149 induces growth inhibition correlating with brain GP expression.Biochemical and Biophysical Research Communications2003;309:126-34

[69]

Barot S,Zhou DL,Dukhande VV.Inhibition of glycogen catabolism induces intrinsic apoptosis and augments multikinase inhibitors in hepatocellular carcinoma cells.Exp Cell Res2019;381:288-300

[70]

Schnier JB,Gumerlock PH,Bradbury EM.Glycogen synthesis correlates with androgen-dependent growth arrest in prostate cancer.BMC Urol2005;5:6 PMCID:PMC1079895

[71]

Sanchez-Sanchez AM,Puente-Moncada N.Melatonin cytotoxicity is associated to warburg effect inhibition in ewing sarcoma cells.PLoS One2015;10:e0135420 PMCID:PMC4529102

[72]

Lee WN,Lim S.Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment.Br J Cancer2004;91:2094-100 PMCID:PMC2409791

[73]

Patra KC.The pentose phosphate pathway and cancer.Trends Biochem Sci2014;39:347-54 PMCID:PMC4329227

[74]

Jiang P,Wu M.Regulation of the pentose phosphate pathway in cancer.Protein Cell2014;5:592-602 PMCID:PMC4112277

[75]

Liu CL,Lee JJ.Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in thyroid cancer cells.Mol Cell Endocrinol2020;499:110595

[76]

Ma L.Inhibiting 6-phosphogluconate dehydrogenase reverses doxorubicin resistance in anaplastic thyroid cancer via inhibiting NADPH-dependent metabolic reprogramming.Biochem Biophys Res Commun2018;498:912-7

[77]

Giusti L,Ciregia F.Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers.J Proteome Res2008;7:4079-88

[78]

Potter M,Morten KJ.The Warburg effect: 80 years on.Biochem Soc Trans2016;44:1499-505 PMCID:PMC5095922

[79]

Vaupel P,Mayer A.The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.Int J Radiat Biol2019;95:912-9

[80]

Mishra D.Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment.Cancers (Basel)2019;11:750 PMCID:PMC6627402

[81]

Schell JC,Jiang L.A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth.Mol Cell2014;56:400-13 PMCID:PMC4268416

[82]

Liberti MV.The warburg effect: how does it benefit cancer cells?.Trends Biochem Sci2016;41:211-8 PMCID:PMC4783224

[83]

Lao-On U,Jitrapakdee S.Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection.J Mol Med (Berl)2018;96:237-47

[84]

Vincent EE,Griss T.Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth.Mol Cell2015;60:195-207

[85]

Liu S,Chen L,Huang X.Long non-coding RNA BRM promotes proliferation and invasion of papillary thyroid carcinoma by regulating the microRNA-331-3p/SLC25A1 axis.Oncol Lett2020;19:3071-8 PMCID:PMC7068577

[86]

Losman JA.What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer.Genes Dev2013;27:836-52 PMCID:PMC3650222

[87]

Reiter-Brennan C,Klein A.The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas.Contemp Oncol (Pozn)2018;22:215-22 PMCID:PMC6377424

[88]

Ježek P.2-hydroxyglutarate in cancer cells.Antioxid Redox Signal2020;33:903-26 PMCID:PMC7533892

[89]

Murugan AK,Xing M.Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer.Biochem Biophys Res Commun2010;393:555-9 PMCID:PMC2838977

[90]

Hemerly JP,Cerutti JM.Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas.Eur J Endocrinol2010;163:747-55

[91]

Rakheja D,Mitui M,Holt SA.Papillary thyroid carcinoma shows elevated levels of 2-hydroxyglutarate.Tumour Biol2011;32:325-33

[92]

Laurenti G.Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer?.Biochem Soc Trans2016;44:1111-6

[93]

Dalla Pozza E,Pacchiana R.Regulation of succinate dehydrogenase and role of succinate in cancer.Semin Cell Dev Biol2020;98:4-14

[94]

Ni Y,Ganapathi S.Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer.Endocr Relat Cancer2015;22:121-30 PMCID:PMC4335266

[95]

Ashtekar A,Magner A..Sdhd24:579-91 PMCID:PMC5650926

[96]

Dhillon S.Ivosidenib: First global approval.Drugs2018;78:1509-16 PMCID:PMC6315051

[97]

Currie E,Zechner R,Farese RV Jr.Cellular fatty acid metabolism and cancer.Cell Metab2013;18:153-61 PMCID:PMC3742569

[98]

Carracedo A,Pandolfi PP.Cancer metabolism: fatty acid oxidation in the limelight.Nat Rev Cancer2013;13:227-32 PMCID:PMC3766957

[99]

Li Z.Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression.Cell Mol Life Sci2016;73:377-92

[100]

von Roemeling CA,Pinkerton AB.Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target.J Clin Endocrinol Metab2015;100:E697-709 PMCID:PMC4422887

[101]

Roemeling CA, Copland JA. Targeting lipid metabolism for the treatment of anaplastic thyroid carcinoma.Expert Opin Ther Targets2016;20:159-66 PMCID:PMC4942188

[102]

Kim H,Brose M. Acetyl coa carboxylase: a potential therapeutic target in thyroid cancer. Cancer Res 2008;68:2370.

[103]

Li EQ,Zhang C.Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors.Eur J Pharm Sci2019;137:105010

[104]

Wang R,Su D.Cpt1c regulated by AMPK promotes papillary thyroid carcinomas cells survival under metabolic stress conditions.J Cancer2017;8:3675-81 PMCID:PMC5688920

[105]

Giordano TJ,Kuick R.Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation.Clin Cancer Res2006;12:1983-93

[106]

Parker CG,Galmozzi A.Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs.ACS Cent Sci2017;3:1276-85 PMCID:PMC5746860

[107]

Locasale JW.Serine, glycine and one-carbon units: cancer metabolism in full circle.Nat Rev Cancer2013;13:572-83 PMCID:PMC3806315

[108]

Yang M.Serine and one-carbon metabolism in cancer.Nat Rev Cancer2016;16:650-62

[109]

Maddocks OD,Adams PD.Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells.Mol Cell2016;61:210-21 PMCID:PMC4728077

[110]

Newman AC.Serine and functional metabolites in cancer.Trends Cell Biol2017;27:645-57

[111]

Shuvalov O,Daks A,Vasileva E.One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy.Oncotarget2017;8:23955-77 PMCID:PMC5410357

[112]

Wang H,Xu L,Cao H.High expression levels of pyrimidine metabolic rate-limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets.Purinergic Signal2020;16:347-66 PMCID:PMC7524999

[113]

He Q,Sha S.Adenosine 5'-monophosphate-activated protein kinase-dependent mTOR pathway is involved in flavokawain B-induced autophagy in thyroid cancer cells.Cancer Sci2018;109:2576-89 PMCID:PMC6113436

[114]

Voigt W,Weiss M,Simon H.Potential activity of paclitaxel, vinorelbine and gemcitabine in anaplastic thyroid carcinoma.J Cancer Res Clin Oncol2005;131:585-90

[115]

Spano JP,Vignot S.GEMOX regimen in the treatment of metastatic differentiated refractory thyroid carcinoma.Med Oncol2012;29:1421-8

[116]

Celano M,Bulotta S.Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells.BMC Cancer2004;4:63 PMCID:PMC517941

[117]

Shelton J,Hollenbaugh JA,Amblard F.Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs.Chem Rev2016;116:14379-455 PMCID:PMC7717319

[118]

Amini SK.Relative populations of some tautomeric forms of 2'-deoxyguanosine-5-fluorouridine mismatch.J Phys Chem B2018;122:4433-44

[119]

Hu CM,Tsao N.Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair.Cancer Cell2012;22:36-50

[120]

Hossain MA,Rahman MM.Network-based genetic profiling reveals cellular pathway differences between follicular thyroid carcinoma and follicular thyroid adenoma.Int J Environ Res Public Health2020;17:1373 PMCID:PMC7068514

[121]

Gangjee A.Antifolates -- past, present and future.Curr Med Chem Anticancer Agents2004;4:405-10

[122]

Hanauske AR,Musib LC.Phase Ib safety and pharmacokinetic evaluation of daily and twice daily oral enzastaurin in combination with pemetrexed in advanced/metastatic cancer.Ann Oncol2009;20:1565-75

[123]

Pate JD,Bonucchi JT.Eradication of papillary thyroid carcinoma in a patient receiving pemetrexed and bevacizumAB.AACE Clin Case Rep2020;6:e247-51 PMCID:PMC7511108

[124]

Sun WY,Jung WH.Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype.J Transl Med2016;14:168 PMCID:PMC4898323

[125]

Jeon MJ,Han JM.High phosphoglycerate dehydrogenase expression induces stemness and aggressiveness in thyroid cancer.Thyroid2020;30:1625-38 PMCID:PMC7869887

[126]

Liao L,Zhan Q.PSPH mediates the metastasis and proliferation of non-small cell lung cancer through MAPK signaling pathways.Int J Biol Sci2019;15:183-94 PMCID:PMC6329917

[127]

Gao S,Xu S.PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer.J Exp Clin Cancer Res2017;36:179 PMCID:PMC5721480

[128]

Dekhne AS,Gangjee A.Therapeutic targeting of mitochondrial one-carbon metabolism in Cancer.Mol Cancer Ther2020:molcanther PMCID:PMC7921203

[129]

Wise DR.Glutamine addiction: a new therapeutic target in cancer.Trends Biochem Sci2010;35:427-33 PMCID:PMC2917518

[130]

Kandasamy P,Kanai Y.Amino acid transporters revisited: New views in health and disease.Trends Biochem Sci2018;43:752-89

[131]

Kim HM,Koo JS.Expression of glutamine metabolism-related proteins in thyroid cancer.Oncotarget2016;7:53628-41 PMCID:PMC5288210

[132]

Chen L.Targeting glutamine induces apoptosis: a cancer therapy approach.Int J Mol Sci2015;16:22830-55 PMCID:PMC4613338

[133]

Chiu M,Taurino G.GPNA inhibits the sodium-independent transport system L for neutral amino acids.Amino Acids2017;49:1365-72

[134]

Schulte ML,Zhao P.Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models.Nat Med2018;24:194-202 PMCID:PMC5803339

[135]

Jin H,Zaal EA.A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer.Elife2020;9:e56749 PMCID:PMC7535927

[136]

Kebebew E,Siperstein AE,Clark OH.Phenylacetate inhibits growth and vascular endothelial growth factor secretion in human thyroid carcinoma cells and modulates their differentiated function.J Clin Endocrinol Metab1999;84:2840-7

[137]

Häfliger P,Rubin M.The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model.J Exp Clin Cancer Res2018;37:234 PMCID:PMC6150977

[138]

Enomoto K,Tamagawa S.A novel therapeutic approach for anaplastic thyroid cancer through inhibition of LAT1.Sci Rep2019;9:14616 PMCID:PMC6787004

[139]

Saha SK,Abdullah-Al-Wadud M,Ali F.Multiomics analysis reveals that GLS and GLS2 differentially modulate the clinical outcomes of cancer.J Clin Med2019;8:355 PMCID:PMC6463114

[140]

Yu Y,Fan C.Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer.J Mol Med (Berl)2018;96:777-90

[141]

Patel D,Kebebew E,Boufraqech M.Glutamine metabolism is a new potential therapeutic target in aggressive thyroid cancer.J Endocr Soc2019;3

[142]

De Amicis F,Vizza D.Epigallocatechin gallate inhibits growth and epithelial-to-mesenchymal transition in human thyroid carcinoma cell lines.J Cell Physiol2013;228:2054-62

[143]

Zaballos MA.Key signaling pathways in thyroid cancer.J Endocrinol2017;235:R43-61

[144]

Carnero A,Renner O,Leal JF.The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications.Curr Cancer Drug Targets2008;8:187-98

[145]

Lien EC,Cantley LC.Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer.Recent Results Cancer Res2016;207:39-72

[146]

Hoxhaj G.The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism.Nat Rev Cancer2020;20:74-88 PMCID:PMC7314312

[147]

Chen G,Renko K.Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells.Oncol Rep2015;33:1994-2000

[148]

Plews RL,Wang C.A novel dual AMPK activator/mTOR inhibitor inhibits thyroid cancer cell growth.J Clin Endocrinol Metab2015;100:E748-56 PMCID:PMC4422890

[149]

Metformin hydrochloride in mitigating side effects of radioactive iodine treatment in patients with differentiated thyroid cancer. ClinicalTrials.gov identifier: NCT03109847. Available from: https://ClinicalTrials.gov/show/NCT03109847 [Last accessed on 23 Jun 2021]

[150]

Bachireddy P,Felsher DW.Getting at MYC through RAS.Clin Cancer Res2005;11:4278-81

[151]

Miller DM,Islam A,Sedoris K.c-Myc and cancer metabolism.Clin Cancer Res2012;18:5546-53 PMCID:PMC3505847

[152]

Laplante M.Regulation of mTORC1 and its impact on gene expression at a glance.J Cell Sci2013;126:1713-9 PMCID:PMC3678406

[153]

Lee T,Nevins J.Sensing and integration of Erk and PI3K signals by Myc.PLoS Comput Biol2008;4:e1000013 PMCID:PMC2265471

[154]

Enomoto K,Park S.Targeting MYC as a therapeutic intervention for anaplastic thyroid cancer.J Clin Endocrinol Metab2017;102:2268-80 PMCID:PMC5505205

[155]

Sakr HI,Nasr C.cMYC expression in thyroid follicular cell-derived carcinomas: a role in thyroid tumorigenesis.Diagn Pathol2017;12:71 PMCID:PMC5627435

[156]

Ko YH,Lee MJ,Vogl TJ.A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside.J Bioenerg Biomembr2012;44:163-70

[157]

Saini S,Maker AV,Prabhakar BS.Therapeutic advances in anaplastic thyroid cancer: a current perspective.Mol Cancer2018;17:154 PMCID:PMC6198524

[158]

Park C,Farmer RW,Monga M.Sorafenib and thyroid cancer.Expert Rev Endocrinol Metab2014;9:561-70

[159]

Krajewska J,Jarzab B.Sorafenib for the treatment of thyroid cancer: an updated review.Expert Opin Pharmacother2015;16:573-83

[160]

Borson-Chazot F,Illouz F.Effect of buparlisib, a pan-class I PI3K inhibitor, in refractory follicular and poorly differentiated thyroid cancer.Thyroid2018;28:1174-9

[161]

Schneider TC,Links TP.Everolimus in patients with advanced follicular-derived thyroid cancer: results of a phase II clinical trial.J Clin Endocrinol Metab2017;102:698-707

[162]

Hanna GJ,Chau NG.Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase II study.Clin Cancer Res2018;24:1546-53

[163]

Harris EJ,Chau N.Everolimus in anaplastic thyroid cancer: a case series.Front Oncol2019;9:106 PMCID:PMC6399130

[164]

Sherman EJ,Ho AL.Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer.Cancer2017;123:4114-21 PMCID:PMC5650535

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/