How the “seed” prepares the “soil”: the bone/bone marrow pre-metastatic niche

Antonio Maurizi , Marco Ponzetti , Nadia Rucci

Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7 : 35

PDF
Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7:35 DOI: 10.20517/2394-4722.2021.74
review-article

How the “seed” prepares the “soil”: the bone/bone marrow pre-metastatic niche

Author information +
History +
PDF

Abstract

Cancer is one of the leading causes of death in women and men worldwide. The fatal outcome usually occurs after metastatic dissemination, and bone is by far the most common site of metastasis for breast and prostate cancer, the highest incidence neoplasia in women and men, respectively. However, while this is clear, the mechanisms through which the metastatic preference is established is not. An emerging concept in this regard is the pre-metastatic niche (PMN) establishment, i.e., the process through which tumors can influence the bone microenvironment from the primary site and make it permissive for their engraftment, before they migrate to the blood flow and metastasize. In this review, we discuss key microenvironmental players in the bone/bone marrow PMN, including osteoblasts, osteoclasts, and bone marrow adipocytes. We also describe the known PMN-educating factors, as well as the role of extracellular vesicles as emerging players in the bone/bone marrow PMN. An overview of current therapeutic developments aimed at targeting the bone PMN is also provided.

Keywords

Bone metastasis / pre-metastatic niche / bone microenvironment / extracellular vesicles

Cite this article

Download citation ▾
Antonio Maurizi, Marco Ponzetti, Nadia Rucci. How the “seed” prepares the “soil”: the bone/bone marrow pre-metastatic niche. Journal of Cancer Metastasis and Treatment, 2021, 7: 35 DOI:10.20517/2394-4722.2021.74

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Güth U,Dirnhofer S,Wight E.Distant metastatic breast cancer as an incurable disease: a tenet with a need for revision.Cancer J2009;15:81-6

[3]

Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration.Mutat Res2011;728:23-34 PMCID:PMC4028085

[4]

Paget S.The distribution of secondary growths in cancer of the breast.Lancet1889;133:571-3

[5]

Gattazzo F,Bonaldo P.Extracellular matrix: a dynamic microenvironment for stem cell niche.Biochim Biophys Acta2014;1840:2506-19 PMCID:PMC4081568

[6]

Raaijmakers MH,Guo S.Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia.Nature2010;464:852-7 PMCID:PMC3422863

[7]

Coleman RE.Skeletal complications of malignancy.Cancer1997;80:1588-94

[8]

Roodman GD.Mechanisms of bone metastasis.N Engl J Med2004;350:1655-64

[9]

Wang H,Barsky L.Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways.Mol Biomed2021;2

[10]

Liu Y.Characteristics and Significance of the Pre-metastatic Niche.Cancer Cell2016;30:668-81

[11]

Lai C,Behar R.Characteristics of immunosuppressive regulatory T cells in cutaneous squamous cell carcinomas and role in metastasis.Lancet2015;385:S59

[12]

Liu Y.Immunosuppressive cells in tumor immune escape and metastasis.J Mol Med (Berl)2016;94:509-22

[13]

Graney PL,Chramiec A,Vunjak-Novakovic G.Engineered models of tumor metastasis with immune cell contributions.iScience2021;24:102179 PMCID:PMC7921600

[14]

Greten FR.Inflammation and cancer: triggers, mechanisms, and consequences.Immunity2019;51:27-41 PMCID:PMC6831096

[15]

Li R,Lin J.Pro-inflammatory cytokines in the formation of the pre-metastatic niche.Cancers (Basel)2020;12:3752 PMCID:PMC7764404

[16]

Chung HY,Lee EK.Redefining chronic inflammation in aging and age-related diseases: proposal of the senoinflammation concept.Aging Dis2019;10:367-82 PMCID:PMC6457053

[17]

Kim DH,Arulkumar R.Senoinflammation: A major mediator underlying age-related metabolic dysregulation.Exp Gerontol2020;134:110891

[18]

Maurizi A.The osteoclast in bone metastasis: player and target.Cancers (Basel)2018;10:218 PMCID:PMC6071064

[19]

Claesson-Welsh L.Vascular permeability--the essentials.Ups J Med Sci2015;120:135-43

[20]

Huang M,Ma P.c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma.J Clin Invest2016;126:1801-14 PMCID:PMC4855929

[21]

Saharinen P,Pulkki K,Alitalo K.VEGF and angiopoietin signaling in tumor angiogenesis and metastasis.Trends Mol Med2011;17:347-62

[22]

Minami T,Schadler K.The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases.Cell Rep2013;4:709-23 PMCID:PMC3763962

[23]

Gupta GP,Chiang AC.Mediators of vascular remodelling co-opted for sequential steps in lung metastasis.Nature2007;446:765-70

[24]

Huang Y,Ding Y.Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis.Cancer Res2009;69:7529-37

[25]

Ghouse SM,Manne S.Therapeutic targeting of vasculature in the premetastatic and metastatic niches reduces lung metastasis.J Immunol2020;204:990-1000 PMCID:PMC7012400

[26]

Li X,Liao J.A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone.Cancer Res2009;69:1685-92 PMCID:PMC2698812

[27]

Mizutani K,McGregor NA.The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment.Neoplasia2009;11:1235-42 PMCID:PMC2767225

[28]

Erler JT,Cox TR.Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche.Cancer Cell2009;15:35-44 PMCID:PMC3050620

[29]

Gartland A,Cox TR.The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis.J Bone Oncol2016;5:100-3 PMCID:PMC5063254

[30]

Reynaud C,Di Mauro P.Lysyl oxidase is a strong determinant of tumor cell colonization in bone.Cancer Res2017;77:268-78

[31]

Cox TR,Schoof EM.The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase.Nature2015;522:106-10 PMCID:PMC4961239

[32]

Ardura JA,Gutiérrez-Rojas I,Gortázar AR.MINDIN secretion by prostate tumors induces premetastatic changes in bone via β-catenin.Endocr Relat Cancer2020;27:441-56

[33]

Guise TA.The vicious cycle of bone metastases.J Musculoskelet Neuronal Interact2002;2:570-2

[34]

Keller ET.The role of osteoclastic activity in prostate cancer skeletal metastases.Drugs Today (Barc)2002;38:91-102

[35]

Loftus A,George C.Extracellular vesicles from osteotropic breast cancer cells affect bone resident cells.J Bone Miner Res2020;35:396-412

[36]

Cappariello A.Tumour-derived extracellular vesicles (EVs): a dangerous "message in a bottle" for bone.Int J Mol Sci2019;20:4805 PMCID:PMC6802008

[37]

Johnson LC.The kinetics of skeletal remodeling.Birth Defects1966;2:66-142

[38]

Marotti G,Remaggi F.Quantitative evaluation on osteocyte canalicular density in human secondary osteons.Bone1995;16:125-8

[39]

Mullender M,Huiskes R.Osteocyte density changes in aging and osteoporosis.Bone1996;18:109-13

[40]

Zallone A, Teti A, Primavera M V, Pace G. Mature osteocytes behaviour in a repletion period: the occurrence of osteoplastic activity.Basic Appl Histochem1983;27:191-204

[41]

Capulli M,Rucci N.Osteoblast and osteocyte: games without frontiers.Arch Biochem Biophys2014;561:3-12

[42]

Delgado-Calle J.Osteocytes and skeletal pathophysiology.Curr Mol Biol Rep2015;1:157-67 PMCID:PMC4673661

[43]

Delgado-Calle J,Bellido T.Role and mechanism of action of sclerostin in bone.Bone2017;96:29-37 PMCID:PMC5328835

[44]

Baron R.WNT signaling in bone homeostasis and disease: from human mutations to treatments.Nat Med2013;19:179-92

[45]

Bellido T.Osteocyte-driven bone remodeling.Calcif Tissue Int2014;94:25-34 PMCID:PMC3947228

[46]

O'Brien CA,Galli C.Control of bone mass and remodeling by PTH receptor signaling in osteocytes.PLoS One2008;3:e2942 PMCID:PMC2491588

[47]

Nakashima T,Fukunaga T.Evidence for osteocyte regulation of bone homeostasis through RANKL expression.Nat Med2011;17:1231-4

[48]

Xiong J,Jilka RL,Manolagas SC.Matrix-embedded cells control osteoclast formation.Nat Med2011;17:1235-41 PMCID:PMC3192296

[49]

Harris SE,Horn D.Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects.Bone2012;50:42-53 PMCID:PMC3374485

[50]

Yang J,Robling AG.HMGB1 is a bone-active cytokine.J Cell Physiol2008;214:730-9

[51]

Kennedy OD,Laudier DM,Sun HB.Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations.Bone2012;50:1115-22 PMCID:PMC3366436

[52]

Ramp WK.Some factors affecting mineralization of bone in tissue culture.Am J Physiol1971;220:270-4

[53]

Prasadam I,Du Z,Crawford R.Osteocyte-induced angiogenesis via VEGF-MAPK-dependent pathways in endothelial cells.Mol Cell Biochem2014;386:15-25

[54]

Santos A,Willems HM,Bronckers AL.Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes.Calcif Tissue Int2011;89:318-26

[55]

Mo C,Vallejo J.Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation.Cell Cycle2015;14:1507-16 PMCID:PMC4615122

[56]

Mo C,Bonewald L,Brotto M.Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation.Recent Pat Biotechnol2012;6:223-9 PMCID:PMC3732468

[57]

Huang J,Lara N.Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway.JBMR Plus2017;1:86-100 PMCID:PMC5667655

[58]

Kawao N.Interactions between muscle tissues and bone metabolism.J Cell Biochem2015;116:687-95

[59]

Li G,Ning K.Osteocytic connexin43 channels regulate bone-muscle crosstalk.Cells2021;10:237 PMCID:PMC7911162

[60]

Bonewald LF.FGF23 production by osteocytes.Pediatr Nephrol2013;28:563-8 PMCID:PMC3582753

[61]

Atkinson EG.The emerging role of osteocytes in cancer in bone.JBMR Plus2019;3:e10186 PMCID:PMC6419608

[62]

Cui Y-X,Jiang WG.New roles of osteocytes in proliferation, migration and invasion of breast and prostate cancer cells.Anticancer Res2016;36:1193-201

[63]

Sottnik JL,Zhang H,Keller ET.Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases.Cancer Res2015;75:2151-8 PMCID:PMC4452392

[64]

Ma YV,Mei X,You L.Mechanically stimulated osteocytes reduce the bone-metastatic potential of breast cancer cells in vitro by signaling through endothelial cells.J Cell Biochem2018:7590-601

[65]

Ma YV,Dalmia S.Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte signaling.J Cell Biochem2018;119:5665-75

[66]

Fan Y,Chen A.Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion.Bone Res2020;8:9 PMCID:PMC7021802

[67]

Wang W,Dai J,Zhang J.Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion.Oncogene2019;38:4540-59

[68]

Andersen TL,Sondergaard TE,Delaisse JM.Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.Br J Haematol2010;148:551-61

[69]

Roodman GD.Pathogenesis of myeloma bone disease.Leukemia2009;23:435-41

[70]

Hardaway AL,Rajagurubandara E.Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases.Cancer Metastasis Rev2014;33:527-43 PMCID:PMC4154371

[71]

Lecka-Czernik B,Kawai M.Skeletal aging and the adipocyte program: New insights from an "old" molecule.Cell Cycle2010;9:3648-54 PMCID:PMC3047793

[72]

Rosen CJ,Rodriguez JP.Marrow fat and the bone microenvironment: developmental, functional, and pathological implications.Crit Rev Eukaryot Gene Expr2009;19:109-24 PMCID:PMC2674609

[73]

Peinado H,Matei IR.Pre-metastatic niches: organ-specific homes for metastases.Nat Rev Cancer2017;17:302-17

[74]

Wang TH,Shieh TM.Lysyl oxidase and the tumor microenvironment.Int J Mol Sci2016;18:62 PMCID:PMC5297697

[75]

Coniglio SJ.Role of tumor-derived chemokines in osteolytic bone metastasis.Front Endocrinol (Lausanne)2018;9:313 PMCID:PMC5999726

[76]

Harmer D,Reagan MR.Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma.Front Endocrinol (Lausanne)2018;9:788 PMCID:PMC6333051

[77]

Kim S,Lin WW.Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.Nature2009;457:102-6 PMCID:PMC2746432

[78]

Kowanetz M,Lee J.Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes.Proc Natl Acad Sci U S A2010;107:21248-55 PMCID:PMC3003076

[79]

Zhao E,Dai J.Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer.Oncoimmunology2012;1:152-61 PMCID:PMC3376984

[80]

Monteiro AC,Gonçalves-Silva T.T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer.PLoS One2013;8:e68171 PMCID:PMC3730734

[81]

Celus W,Oliveira AI.Loss of caveolin-1 in metastasis-associated macrophages drives lung metastatic growth through increased angiogenesis.Cell Rep2017;21:2842-54 PMCID:PMC5732321

[82]

Castaño Z,Spiegel A.IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization.Nat Cell Biol2018;20:1084-97 PMCID:PMC6511979

[83]

Jiménez-Sánchez A,Pourpe S.Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient.Cell2017;170:927-938.e20 PMCID:PMC5589211

[84]

Monteran L,Sabah I.Bone metastasis is associated with acquisition of mesenchymal phenotype and immune suppression in a model of spontaneous breast cancer metastasis.Sci Rep2020;10:13838 PMCID:PMC7429866

[85]

Monteiro AC.Dendritic cells development into osteoclast-type APCs by 4T1 breast tumor T cells milieu boost bone consumption.Bone2021;143:115755

[86]

Tomita T,Ishibashi S.Imbalance of Clara cell-mediated homeostatic inflammation is involved in lung metastasis.Oncogene2011;30:3429-39

[87]

Hansen MT,Cremers N.A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4.Oncogene2015;34:424-35

[88]

Wang L,Li J.Bone sialoprotein-αvβ3 integrin axis promotes breast cancer metastasis to the bone.Cancer Sci2019;110:3157-72 PMCID:PMC6778634

[89]

Kwakwa KA.Integrin αvβ3 signaling in tumor-induced bone disease.Cancers (Basel)2017;9:84 PMCID:PMC5532620

[90]

Sloan EK,Stanley KL.Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone.Breast Cancer Res2006;8:R20 PMCID:PMC1557720

[91]

Bachmann M,Mykuliak VV.Induction of ligand promiscuity of αVβ3 integrin by mechanical force.J Cell Sci2020;133:jcs242404

[92]

Pang X,Zhang X,Cui Y.Osteopontin as a multifaceted driver of bone metastasis and drug resistance.Pharmacol Res2019;144:235-44

[93]

Nagasawa T,Tachibana K.Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1.Nature1996;382:635-8

[94]

Ara T,Sugiyama T,Kawabata K.Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny.Immunity2003;19:257-67

[95]

Dar A,Shinder V.Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells.Nat Immunol2005;6:1038-46

[96]

Müller A,Soto H.Involvement of chemokine receptors in breast cancer metastasis.Nature2001;410:50-6

[97]

Geminder H,Goldberg L.A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma.J Immunol2001;167:4747-57

[98]

Sun YX,Shelburne CE.Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo.J Cell Biochem2003;89:462-73

[99]

Porcile C,Barbero S,Schettini G.CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line.Ann N Y Acad Sci2004;1030:162-9

[100]

Sun YX,Jung Y.Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo.J Bone Miner Res2005;20:318-29

[101]

Jung Y,Lee E.Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow.Mol Cancer Res2015;13:197-207 PMCID:PMC4297714

[102]

Nakamura ES,Kobayashi M.RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4.Clin Exp Metastasis2006;23:9-18

[103]

Moore MA.The role of chemoattraction in cancer metastases.Bioessays2001;23:674-6

[104]

Zhuang X,Li X.Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1.Nat Cell Biol2017;19:1274-85

[105]

Kang Y,Shu W.A multigenic program mediating breast cancer metastasis to bone.Cancer Cell2003;3:537-49

[106]

Yin JJ,Chirgwin JM.TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development.J Clin Invest1999;103:197-206 PMCID:PMC407876

[107]

Sankar S,Bensen L,Centrella M.Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis.J Clin Invest1996;97:1436-46 PMCID:PMC507203

[108]

Waning DL,Reiken S.Excess TGF-β mediates muscle weakness associated with bone metastases in mice.Nat Med2015;21:1262-71 PMCID:PMC4636436

[109]

Filvaroff E,Ye J,Lotz J.Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass.Development1999;126:4267-79

[110]

Buijs JT,Guise TA.The role of TGF-β in bone metastasis: novel therapeutic perspectives.Bonekey Rep2012;1:96 PMCID:PMC3727840

[111]

Dadwal UC,Page JM,Kessler M.3d bone morphology alters gene expression, motility, and drug responses in bone metastatic tumor cells.Int J Mol Sci2020;21:6913 PMCID:PMC7555977

[112]

Rettig MP,DiPersio JF.Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4.Leukemia2012;26:34-53 PMCID:PMC3514440

[113]

Chu K,Ye X.Cadherin-11 promotes the metastasis of prostate cancer cells to bone.Mol Cancer Res2008;6:1259-67 PMCID:PMC2643879

[114]

Mishra A,Pienta KJ.Homing of cancer cells to the bone.Cancer Microenviron2011;4:221-35 PMCID:PMC3234327

[115]

Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad.Curr Opin Cell Biol2015;35:69-77

[116]

Marcoux G,Cloutier N,Nigrovic PA.Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses.Sci Rep2016;6:35928 PMCID:PMC5081512

[117]

Taverna S,D'Ascenzo S,Dolo V.Breast cancer derived extracellular vesicles in bone metastasis induction and their clinical implications as biomarkers.Int J Mol Sci2020;21:3573 PMCID:PMC7278927

[118]

Witwer KW.Extracellular vesicles or exosomes?.J Extracell Vesicles2019;8:1648167 PMCID:PMC6711079

[119]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[120]

Keerthikumar S,Ariyaratne D.ExoCarta: a web-based compendium of exosomal cargo.J Mol Biol2016;428:688-92 PMCID:PMC4783248

[121]

Hashimoto K,Sunamura S.Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A.Proc Natl Acad Sci U S A2018;115:2204-9 PMCID:PMC5834702

[122]

Ye Y,Ma YY.Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer.Oncotarget2017;8:94834-49 PMCID:PMC5706916

[123]

Green TM,Barsky SH,Lorico A.Breast cancer-derived extracellular vesicles: characterization and contribution to the metastatic phenotype.Biomed Res Int2015;2015:634865 PMCID:PMC4639645

[124]

Hoshino A,Shen TL.Tumour exosome integrins determine organotropic metastasis.Nature2015;527:329-35 PMCID:PMC4788391

[125]

Ji Q,Sui H.Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation.Nat Commun2020;11:1211 PMCID:PMC7058049

[126]

Costa-Silva B,Ocean AJ.Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.Nat Cell Biol2015;17:816-26 PMCID:PMC5769922

[127]

Itoh T,Ohtsuki Y.Microvesicles released from hormone-refractory prostate cancer cells facilitate mouse pre-osteoblast differentiation.J Mol Histol2012;43:509-15 PMCID:PMC3460166

[128]

Borel M,Magne D,Brizuela L.Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2.Biochim Biophys Acta Mol Basis Dis2020;1866:165919

[129]

Millimaggi D,Angelucci A,Rucci N.Osteoblast-conditioned media stimulate membrane vesicle shedding in prostate cancer cells.Int J Oncol2006;28:909-14

[130]

Probert C,Speakman A.Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis.Oncogene2019;38:1751-63 PMCID:PMC6372071

[131]

Au Yeung CL,Tsuruga T.Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1.Nat Commun2016;7:11150 PMCID:PMC4820618

[132]

Huang W,Cen S,Chen X.High-level expression of microRNA-21 in peripheral blood mononuclear cells is a diagnostic and prognostic marker in prostate cancer.Genet Test Mol Biomarkers2015;19:469-75

[133]

Rodríguez M,Hessvik NP.Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes.Mol Cancer2017;16:156 PMCID:PMC5629793

[134]

Yuan X,Ling S.Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells.Theranostics2021;11:1429-45 PMCID:PMC7738874

[135]

Sugatani T,Hruska KA.A microRNA expression signature of osteoclastogenesis.Blood2011;117:3648-57 PMCID:PMC3072882

[136]

Raimondi L,Amodio N.Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation.Oncotarget2015;6:13772-89 PMCID:PMC4537049

[137]

Raimondo S,Vicario E.Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis.J Hematol Oncol2019;12:2 PMCID:PMC6325886

[138]

Taverna S,Giallombardo M.Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway.Sci Rep2017;7:3170 PMCID:PMC5466625

[139]

Peinado H,Lavotshkin S.Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET.Nat Med2012;18:883-91 PMCID:PMC3645291

[140]

Tucci M,Passarelli A,Cives M.Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity.Oncotarget2018;9:20826-37 PMCID:PMC5945529

[141]

Maia J,Strano Moraes MC,Costa-Silva B.Exosome-Based Cell-cell communication in the tumor microenvironment.Front Cell Dev Biol2018;6:18 PMCID:PMC5826063

[142]

Mannavola F,Felici C,D'Oronzo S.Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis.J Transl Med2019;17:230 PMCID:PMC6642540

[143]

Saatci O,Raza U.Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer.Nat Commun2020;11:2416 PMCID:PMC7229173

[144]

Gnant M,Dubsky PC.Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial.Lancet2015;386:433-43

[145]

Hadji P,Wilson C.Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel.Ann Oncol2016;27:379-90

[146]

Coleman R,Barrios C.Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial.Lancet Oncol2020;21:60-72

[147]

Sartor O,Nilsson S.Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial.Lancet Oncol2014;15:738-46

[148]

Suominen MI,Käkönen R.Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis.J Natl Cancer Inst2013;105:908-16

[149]

Srivastava K,Korn C.Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth.Cancer Cell2014;26:880-95

[150]

Yamamoto M,Ohta M.TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche.Cancer Res2008;68:9754-62

[151]

Zhang H,Liu J,Lu A.Advances in the discovery of exosome inhibitors in cancer.J Enzyme Inhib Med Chem2020;35:1322-30 PMCID:PMC7717571

[152]

Di Pompo G,Canti L.Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma.Oncotarget2017;8:54478-96 PMCID:PMC5589596

[153]

Hoshino A,Bojmar L.Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers.Cell2020;182:1044-1061.e18 PMCID:PMC7522766

AI Summary AI Mindmap
PDF

41

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/