Targeting transcriptional regulators for treatment of anaplastic thyroid cancer

Woo Kyung Lee , Sheue-Yann Cheng

Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7 : 27

PDF
Journal of Cancer Metastasis and Treatment ›› 2021, Vol. 7:27 DOI: 10.20517/2394-4722.2021.58
review-article

Targeting transcriptional regulators for treatment of anaplastic thyroid cancer

Author information +
History +
PDF

Abstract

Dysregulation of genes perpetuates cancer progression. During carcinogenesis, cancer cells acquire dependency of aberrant transcriptional programs (known as “transcription addiction”) to meet the high demands for uncontrolled proliferation. The needs for particular transcription programs for cancer growth could be cancer-type-selective. The dependencies of certain transcription regulators could be exploited for therapeutic benefits. Anaplastic thyroid cancer (ATC) is an extremely aggressive human cancer for which new treatment modalities are urgently needed. Its resistance to conventional treatments and the lack of therapeutic options for improving survival might have been attributed to extensive genetic heterogeneity due to subsequent evolving genetic alterations and clonal selections during carcinogenesis. Despite this genetic complexity, mounting evidence has revealed a characteristic transcriptional addiction of ATC cells resulting in evolving diverse oncogenic signaling for cancer cell survival. The transcriptional addiction has presented a huge challenge for effective targeting as shown by the failure of previous targeted therapies. However, an emerging notion is that many different oncogenic signaling pathways activated by multiple upstream driver mutations might ultimately converge on the transcriptional responses, which would provide an opportunity to target transcriptional regulators for treatment of ATC. Here, we review the current understanding of how genetic alterations in cancer distorted the transcription program, leading to acquisition of transcriptional addiction. We also highlight recent findings from studies aiming to exploit the opportunity for targeting transcription regulators as potential therapeutics for ATC.

Keywords

Transcriptional addiction / transcription / oncogene addiction / cancer stem cell / thyroid hormone receptors / steroid receptor coactivators / BET inhibitor / anaplastic thyroid cancer

Cite this article

Download citation ▾
Woo Kyung Lee, Sheue-Yann Cheng. Targeting transcriptional regulators for treatment of anaplastic thyroid cancer. Journal of Cancer Metastasis and Treatment, 2021, 7: 27 DOI:10.20517/2394-4722.2021.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bradner JE,Young RA.Transcriptional addiction in cancer.Cell2017;168:629-43 PMCID:PMC5308559

[2]

Franco HL.No driver behind the wheel?.Cell2015;163:28-30

[3]

Adhikary S.Transcriptional regulation and transformation by Myc proteins.Nat Rev Mol Cell Biol2005;6:635-45

[4]

Lin CY,Rahl PB.Transcriptional Amplification in tumor cells with elevated c-Myc.Cell2012;151:56-67 PMCID:PMC3462372

[5]

Luo Z,Guest E.The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output.Mol Cell Biol2012;32:2608-17 PMCID:PMC3434493

[6]

Wang Y,Kwiatkowski N.CDK7-dependent transcriptional addiction in triple-negative breast cancer.Cell2015;163:174-86 PMCID:PMC4583659

[7]

Zanconato F,Forcato M.Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4.Nat Med2018;24:1599-610 PMCID:PMC6181206

[8]

Zeng M,Zhang T.Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13.Elife2018;7:e39030 PMCID:PMC6251623

[9]

Kwiatkowski N,Rahl PB.Targeting transcription regulation in cancer with a covalent CDK7 inhibitor.Nature2014;511:616-20 PMCID:PMC4244910

[10]

Christensen CL,Abraham BJ.Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor.Cancer cell2014;26:909-22 PMCID:PMC4261156

[11]

Molinaro E,Biagini A.Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies.Nat Rev Endocrinol2017;13:644-60

[12]

Lee WK,Kim H.Peripheral location and infiltrative margin predict invasive features of papillary thyroid microcarcinoma.Eur J Endocrinol2019;181:139-49

[13]

Choi JB,Lee SG.Long-term oncologic outcomes of papillary thyroid microcarcinoma according to the presence of clinically apparent lymph node metastasis: a large retrospective analysis of 5,348 patients.Cancer Manag Res2018;10:2883-91 PMCID:PMC6118257

[14]

Tuttle RM,Perrier ND.Updated American Joint Committee on cancer/tumor-node-metastasis staging system for differentiated and anaplastic thyroid cancer: what changed and why?.Thyroid2017;27:751-6 PMCID:PMC5467103

[15]

Ferrari SM,Ragusa F.Novel treatments for anaplastic thyroid carcinoma.Gland Surg2020;9:S28-42 PMCID:PMC6995904

[16]

Smallridge RC,Asa SL.American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer.Thyroid2012;22:1104-39

[17]

Tiedje V,Weber F,Moss L.Anaplastic thyroid carcinoma: review of treatment protocols.Endocr Relat Cancer2018;25:R153-61

[18]

Smallridge RC.Approach to the patient with anaplastic thyroid carcinoma.J Clin Endocrinol Metab2012;97:2566-72 PMCID:PMC3410281

[19]

Haddad RI,Ball DW.Anaplastic thyroid carcinoma, version 2.2015.J Natl Compr Canc Netw2015;13:1140-50 PMCID:PMC4986600

[20]

Subbiah V,Wainberg ZA.Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer.J Clin Oncol2018;36:7-13 PMCID:PMC5791845

[21]

Kunstman JW,Goh G.Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing.Hum Mol Genet2015;24:2318-29 PMCID:PMC4380073

[22]

Pozdeyev N,Sokol ES.Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers.Clin Cancer Res2018;24:3059-68 PMCID:PMC6030480

[23]

Yoo SK,Lee EK.Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer.Nat Commun2019;10:1-12 PMCID:PMC6591357

[24]

Lee WK,Yim SH.Whole exome sequencing identifies a novel hedgehog-interacting protein g516r mutation in locally advanced papillary thyroid cancer.Int J Mol Sci2018;19:2867 PMCID:PMC6213497

[25]

Le Pennec S,Gacquer D.Intratumor heterogeneity and clonal evolution in an aggressive papillary thyroid cancer and matched metastases.Endocr Relat Cancer2015;22:205-16

[26]

Cao X,Zheng X.Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid carcinoma.Thyroid2019;29:809-23

[27]

Whyte WA,Hnisz D.Master transcription factors and mediator establish super-enhancers at key cell identity genes.Cell2013;153:307-19 PMCID:PMC3653129

[28]

Lovén J,Lin CY.Selective inhibition of tumor oncogenes by disruption of super-enhancers.Cell2013;153:320-34 PMCID:PMC3760967

[29]

Chapuy B,Lin CY.Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma.Cancer cell2013;24:777-90 PMCID:PMC4018722

[30]

Hnisz D,Lee TI.Super-enhancers in the control of cell identity and disease.Cell2013;155:934-47 PMCID:PMC3841062

[31]

Shi J,Zepeda-Mendoza CJ.Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.Genes Dev2013;27:2648-62 PMCID:PMC3877755

[32]

Sainsbury S,Cramer P.Structural basis of transcription initiation by RNA polymerase II.Nat Rev Mol Cell Biol2015;16:129-43

[33]

Asturias FJ.RNA polymerase II structure, and organization of the preinitiation complex.Curr Opin Struct Biol2004;14:121-9

[34]

Warfield L,Baptista T,Tora L.Transcription of nearly all yeast RNA polymerase II-transcribed genes is dependent on transcription factor TFIID.Mol Cell2017;68:118-29.e5 PMCID:PMC5679267

[35]

Thomas MC.The general transcription machinery and general cofactors.Crit Rev Biochem Mol Biol2006;41:105-78

[36]

Mittler G,Timmers HTM.Novel critical role of a human Mediator complex for basal RNA polymerase II transcription.EMBO Rep2001;2:808-13 PMCID:PMC1084041

[37]

Poss ZC,Taatjes DJ.The Mediator complex and transcription regulation.Crit Rev Biochem Mol Biol2013;48:575-608 PMCID:PMC3852498

[38]

Compe E.TFIIH: when transcription met DNA repair.Nat Rev Mol Cell Biol2012;13:343-54

[39]

Moreland RJ,Yan Q,Egly J-M.A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II.J Biol Chem1999;274:22127-30

[40]

Ghosh A,Lima CD.Structural insights to how mammalian capping enzyme reads the CTD code.Mol Cell2011;43:299-310 PMCID:PMC3142331

[41]

Larochelle S,Glover-Cutter K.Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II.Nat Struct Mol Biol2012;19:1108-15 PMCID:PMC3746743

[42]

Jonkers I.Getting up to speed with transcription elongation by RNA polymerase II.Nat Rev Mol Cell Biol2015;16:167-77 PMCID:PMC4782187

[43]

Marshall NF.Purification of P-TEFb, a transcription factor required for the transition into productive elongation.J Biol Chem1995;270:12335-8

[44]

Hsin JP.The RNA polymerase II CTD coordinates transcription and RNA processing.Genes Dev2012;26:2119-37 PMCID:PMC3465734

[45]

Fan Z,Hogg SJ.CDK13 cooperates with CDK12 to control global RNA polymerase II processivity.Sci Adv2020;6:eaaz5041 PMCID:PMC7190357

[46]

Liang K,Gilmore JM.Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing.Mol Cell Biol2015;35:928-38 PMCID:PMC4333096

[47]

Nie Z,Wei G.c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells.Cell2012;151:68-79 PMCID:PMC3471363

[48]

Brown JD,Duan Q.NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis.Mol Cell2014;56:219-31 PMCID:PMC4224636

[49]

Præstholm SM,Nielsen R.Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone.PLoS Genet2020;16:e1008770 PMCID:PMC7274477

[50]

Cheng SY,Davis PJ.Molecular aspects of thyroid hormone actions.Endocr Rev2010;31:139-70 PMCID:PMC2852208

[51]

Mullen AC,Newman JJ.Master transcription factors determine cell-type-specific responses to TGF-β signaling.Cell2011;147:565-76 PMCID:PMC3212730

[52]

Trompouki E,Lawton LN.Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration.Cell2011;147:577-89 PMCID:PMC3219441

[53]

Allen BL.The Mediator complex: a central integrator of transcription.Nat Rev Mol Cell Biol2015;16:155-66 PMCID:PMC4963239

[54]

Barbieri CE,Lawrence MS.Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer.Nat Genet2012;44:685-9 PMCID:PMC3673022

[55]

Makinen N,Tolvanen J.MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas.Science2011;334:252-5

[56]

Jones PA,Baylin S.Targeting the cancer epigenome for therapy.Nat Rev Genet2016;17:630-41

[57]

Hnisz D,Young RA.Insulated neighborhoods: structural and functional units of mammalian gene control.Cell2016;167:1188-200 PMCID:PMC5125522

[58]

Gorkin DU,Ren B.The 3D genome in transcriptional regulation and pluripotency.Cell stem cell2014;14:762-75 PMCID:PMC4107214

[59]

Gibcus JH.The hierarchy of the 3D genome.Mol Cell2013;49:773-82 PMCID:PMC3741673

[60]

Phillips-Cremins JE.Chromatin insulators: linking genome organization to cellular function.Mol Cell2013;50:461-74 PMCID:PMC3670141

[61]

Lawrence MS,Mermel CH.Discovery and saturation analysis of cancer genes across 21 tumour types.Nature2014;505:495-501 PMCID:PMC4048962

[62]

Viny AD,Spitzer B.Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis.J Cell Mol Med2015;212:1819-32 PMCID:PMC4612085

[63]

Drier Y,Williamson KE.An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma.Nat Genet2016;48:265-72 PMCID:PMC4767593

[64]

Tomazou EM,Schmidl C.Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1.Cell Rep2015;10:1082-95 PMCID:PMC4542316

[65]

Zhang X,Francis JM.Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers.Nat Genet2016;48:176-82 PMCID:PMC4857881

[66]

Mansour MR,Anders L.An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element.Science2014;346:1373-7 PMCID:PMC4720521

[67]

Nabet B,Reyes JM.Deregulation of the Ras-Erk signaling axis modulates the enhancer landscape.Cell Rep2015;12:1300-13 PMCID:PMC4551578

[68]

Katainen R,Pitkänen E.CTCF/cohesin-binding sites are frequently mutated in cancer.Nat Genet2015;47:818-21

[69]

Esteller M.Epigenetics in cancer.N Engl J Med2008;358:1148-59

[70]

Ando M,Xu G.Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers.Nat Commun2019;10:2188 PMCID:PMC6522544

[71]

Wang Z,Zhou W.Complex impact of DNA methylation on transcriptional dysregulation across 22 human cancer types.Nucleic Acids Res2020;48:2287-302 PMCID:PMC7049702

[72]

Baylin SB.Epigenetic determinants of cancer.Cold Spring Harb Perspect Biol2016;8:a019505 PMCID:PMC5008069

[73]

Polak P,Koren A.Cell-of-origin chromatin organization shapes the mutational landscape of cancer.Nature2015;518:360-4 PMCID:PMC4405175

[74]

Ayob AZ.Cancer stem cells as key drivers of tumour progression.J Biomed Sci2018;25:20 PMCID:PMC5838954

[75]

Batlle E.Cancer stem cells revisited.Nat Med2017;23:1124-34

[76]

Greaves M.Clonal evolution in cancer.Nature2012;481:306-13 PMCID:PMC3367003

[77]

Loh YH,Chew JL.The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.Nat Genet2006;38:431-40

[78]

Boyer LA,Cole MF.Core transcriptional regulatory circuitry in human embryonic stem cells.Cell2005;122:947-56 PMCID:PMC3006442

[79]

Kagey MH,Bilodeau S.Mediator and cohesin connect gene expression and chromatin architecture.Nature2010;467:430-5 PMCID:PMC2953795

[80]

Rahl PB,Seila AC.c-Myc regulates transcriptional pause release.Cell2010;141:432-45 PMCID:PMC2864022

[81]

Poli V,Fasciani A.MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.Nat Commun2018;9:1024 PMCID:PMC5844884

[82]

Ben-Porath I,Carey VJ.An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors.Nat Genet2008;40:499-507 PMCID:PMC2912221

[83]

Wong DJ,Ridky TW,Segal E.Module map of stem cell genes guides creation of epithelial cancer stem cells.Cell Stem Cell2008;2:333-44 PMCID:PMC2628721

[84]

Kim J,Chu J.A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs.Cell2010;143:313-24 PMCID:PMC3018841

[85]

Efroni S,Cheng J.Global transcription in pluripotent embryonic stem cells.Cell Stem Cell2008;2:437-47 PMCID:PMC2435228

[86]

Bernstein BE,Xie X.A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell2006;125:315-26

[87]

Azuara V,Sauer S.Chromatin signatures of pluripotent cell lines.Nat Cell Biol2006;8:532-8

[88]

Gan Q,McDonald OG.Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells.Stem Cells2007;25:2-9

[89]

Mikkelsen TS,Jaffe DB.Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature2007;448:553-60 PMCID:PMC2921165

[90]

Lee WK,Kim D.Distinct features of nonthyroidal illness in critically ill patients with infectious diseases.Medicine (Baltimore)2016;95:e3346 PMCID:PMC4998832

[91]

Aranda A.Nuclear hormone receptors and gene expression.Physiol Rev2001;81:1269-304

[92]

Méndez-Pertuz M,Aranda A.The thyroid hormone receptor antagonizes CREB-mediated transcription.EMBO J2003;22:3102-12 PMCID:PMC162147

[93]

Rogatsky I,Yamamoto KR.Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones.EMBO J2001;20:6071-83 PMCID:PMC125702

[94]

Kim WG.Thyroid hormone receptors and cancer.Biochim Biophys Acta2013;1830:3928-36 PMCID:PMC3406244

[95]

Li Z,Chandrasekaran R.Biallelic inactivation of the thyroid hormone receptor β1 gene in early stage breast cancer.Cancer Res2002;62:1939-43

[96]

Iwasaki Y,Tomizawa Y.Epigenetic inactivation of the thyroid hormone receptor β1 gene at 3p24. 2 in lung cancer.Ann Surg Oncol2010;17:2222-8

[97]

Joseph B,Liu D,Xing M.Lack of mutations in the thyroid hormone receptor (TR) α and β genes but frequent hypermethylation of the TR β gene in differentiated thyroid tumors.J Clin Endocrinol Metab2007;92:4766-70

[98]

Dunwell TL,Pavlova TV.Epigenetic analysis of childhood acute lymphoblastic leukemia.Epigenetics2009;4:185-93

[99]

Hörkkö TT,George SM,Karttunen TJ.Thyroid hormone receptor β1 in normal colon and colorectal cancer-association with differentiation, polypoid growth type and K-ras mutations.Int J Cancer2006;118:1653-9

[100]

Kim WG,Kim DW,Cheng SY.Inhibition of tumorigenesis by the thyroid hormone receptor β in xenograft models.Thyroid2014;24:260-9 PMCID:PMC3926148

[101]

Kim WG,Kim DW,Kebebew E.Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression.Endocrinology2013;154:25-35 PMCID:PMC3529371

[102]

Jazdzewski K,Jendrzejewski J.Thyroid hormone receptor β (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC).J Clin Endocrinol Metab2011;96:E546-53 PMCID:PMC3047217

[103]

Suzuki H,Cheng SY.Mice with a mutation in the thyroid hormone receptor β gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis.Thyroid2002;12:963-9

[104]

Guigon C,Willingham M.Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors.Oncogene2011;30:3381-90 PMCID:PMC3457781

[105]

Furumoto H,Chandramouli G.An unliganded thyroid hormone β receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis.Mol Cell Biol2005;25:124-35 PMCID:PMC538780

[106]

Kato Y,Willingham MC.A tumor suppressor role for thyroid hormone β receptor in a mouse model of thyroid carcinogenesis.Endocrinology2004;145:4430-8

[107]

Zhu XG,Willingham MC.Thyroid hormone receptors are tumor suppressors in a mouse model of metastatic follicular thyroid carcinoma.Oncogene2010;29:1909-19 PMCID:PMC3443884

[108]

Gabay M,Felsher DW.MYC activation is a hallmark of cancer initiation and maintenance.Cold Spring Harb Perspect Med2014;4:a014241 PMCID:PMC4031954

[109]

Haugen D,Varhaug J.Demonstration of a TGF-α-EGF-receptor autocrine loop and c-myc protein over-expression in papillary thyroid carcinomas.Int J Cancer1993;55:37-43

[110]

Enomoto K,Park S.Targeting MYC as a therapeutic intervention for anaplastic thyroid cancer.J Clin Endocrinol Metab2017;102:2268-80 PMCID:PMC5505205

[111]

Terrier P,Schlumberger M.Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas.Br J Cancer1988;57:43-7 PMCID:PMC2246694

[112]

Romano M,Karner M.Relationship between the level of c-myc mRNA and histologic aggressiveness in thyroid tumors.Horm Res Paediatr1993;39:161-5

[113]

Zhu X,Park JW,Cheng SY.Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation.Neoplasia2014;16:757-69 PMCID:PMC4234871

[114]

Soucek L,Sodir NM.Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice.Genes Dev2013;27:504-13 PMCID:PMC3605464

[115]

Kouzarides T.Chromatin modifications and their function.Cell2007;128:693-705

[116]

Filippakopoulos P,Mangos M.Histone recognition and large-scale structural analysis of the human bromodomain family.Cell2012;149:214-31 PMCID:PMC3326523

[117]

Mertz JA,Bryant BM.Targeting MYC dependence in cancer by inhibiting BET bromodomains.Proc Natl Acad Sci U S A2011;108:16669-74 PMCID:PMC3189078

[118]

Delmore JE,Lemieux ME.BET bromodomain inhibition as a therapeutic strategy to target c-Myc.Cell2011;146:904-17 PMCID:PMC3187920

[119]

Bian B,Gayet O.Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ 1: implications for individualized medicine efforts.EMBO Mol Med2017;9:482-97 PMCID:PMC5376755

[120]

Li N,Qi XK.BET bromodomain inhibitor JQ1 preferentially suppresses EBV-positive nasopharyngeal carcinoma cells partially through repressing c-Myc.Cell Death Dis2018;9:761 PMCID:PMC6037792

[121]

Shao Q,Lin Z,Suen JY.BET protein inhibitor JQ1 attenuates Myc-amplified MCC tumor growth in vivo.Cancer Res2014;74:7090-102 PMCID:PMC4322674

[122]

Baratta MG,Zwang Y.An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma.Proc Natl Acad Sci U S A2015;112:232-7 PMCID:PMC4291641

[123]

Gao X,Zhang X.Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer.Biochem Biophys Res Commun2016;469:679-85

[124]

Mio C,Baldan F.BET bromodomain inhibitor JQ1 modulates microRNA expression in thyroid cancer cells.Oncol Rep2018;39:582-8

[125]

Zhu X,Zhao L.Bromodomain and extraterminal protein inhibitor JQ1 suppresses thyroid tumor growth in a mouse model.Clin Cancer Res2017;23:430-40 PMCID:PMC5241246

[126]

McFadden DG,Santiago PM.p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer.Proc Natl Acad Sci U S A2014;111:E1600-9 PMCID:PMC4000830

[127]

Zaballos MA.Key signaling pathways in thyroid cancer.J Endocrinol2017;235:R43-61

[128]

Naoum GE,Kim B.Novel targeted therapies and immunotherapy for advanced thyroid cancers.Mol Cancer2018;17:51 PMCID:PMC5817719

[129]

Zhu X,Park S,Qi J.Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors.Oncotarget2018;9:35408-21 PMCID:PMC6226043

[130]

Ozer HG,Powell B.BRD4 profiling identifies critical chronic lymphocytic leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor.Cancer Discov2018;8:458-77 PMCID:PMC5882533

[131]

Barrett SD,Dudley DT.The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901.Bioorg Med Chem Lett2008;18:6501-4

[132]

Wang L,O’Malley BW.The role of steroid receptor coactivators in hormone dependent cancers and their potential as therapeutic targets.Horm Cancer2016;7:229-35 PMCID:PMC4930410

[133]

Yao TP,Zhou N,Livingston DM.The nuclear hormone receptor coactivator SRC-1 is a specific target of p300.Proc Natl Acad Sci U S A1996;93:10626-31 PMCID:PMC38204

[134]

Anafi M,Barlev NA.GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor.Mol Endocrinol2000;14:718-32

[135]

Brown K,Underhill TM,Torchia J.The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5.J Biol Chem2003;278:39402-12

[136]

Koh SS,Lee YH.Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities.J Biol Chem2001;276:1089-98

[137]

Spencer TE,Burcin MM.Steroid receptor coactivator-1 is a histone acetyltransferase.Nature1997;389:194-8

[138]

Zhang H,Sun X.Differential gene regulation by the SRC family of coactivators.Genes Dev2004;18:1753-65 PMCID:PMC478195

[139]

Anzick SL,Walker RL.AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer.Science1997;277:965-8

[140]

Yan J,Tsai MJ.SRC-3/AIB1: transcriptional coactivator in oncogenesis.Acta Pharmacol Sin2006;27:387-94

[141]

Xu J,O'Malley BW.Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family.Nat Rev Cancer2009;9:615-30 PMCID:PMC2908510

[142]

Torres-Arzayus MI,Yuan J.High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene.Cancer Cell2004;6:263-74

[143]

Ying H,Cheng S.The steroid receptor coactivator-3 is a tumor promoter in a mouse model of thyroid cancer.Oncogene2008;27:823-30

[144]

Lonard DM.Nuclear receptor coregulators: modulators of pathology and therapeutic targets.Nat Rev Endocrinol2012;8:598-604 PMCID:PMC3564250

[145]

Song X,Zhao M.Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3.Proc Natl Acad Sci U S A2016;113:4970-5 PMCID:PMC4983835

[146]

Landa I,Boucai L.Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers.J Clin Invest2016;126:1052-66 PMCID:PMC4767360

[147]

Lee WK,Fozzatti L.Steroid receptor coactivator-3 as a target for anaplastic thyroid cancer.Endocr Relat Cancer2020;27:209-20 PMCID:PMC7326649

[148]

Lee HJ,Kang CW,Cho YH.A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer.Cancer Lett2018;417:131-40

[149]

Rader J,Hart LS.Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma.Clin Cancer Res2013;19:6173-82 PMCID:PMC3844928

[150]

Zhang YX,Czaplinski JT.Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo.Mol Cancer Ther2014;13:2184-93

[151]

Finn RS,Rugo HS.Palbociclib and letrozole in advanced breast cancer.N Engl J Med2016;375:1925-36

[152]

Hortobagyi GN,Burris HA.Ribociclib as first-line therapy for HR-positive, advanced breast cancer.N Engl J Med2016;375:1738-48

[153]

Valenciaga A,Yu L.Transcriptional targeting of oncogene addiction in medullary thyroid cancer.JCI Insight2018;3:e122225 PMCID:PMC6141185

[154]

Geng M,Cao X,Zhang T.Targeting CDK12-mediated transcription regulation in anaplastic thyroid carcinoma.Biochem Biophys Res Commun2019;520:544-50

[155]

Zhu X,Lee WK.Potentiated anti-tumor effects of BETi by MEKi in anaplastic thyroid cancer.Endocr Relat Cancer2019;26:739-50 PMCID:PMC6938575

[156]

Chipumuro E,Christensen CL.CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer.Cell2014;159:1126-39 PMCID:PMC4243043

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/