PDF
Abstract
Genetic and epigenetic lesions within hematopoietic cell populations drive diverse hematological malignancies. Myelodysplastic syndromes (MDS) are a group of myeloid neoplasms affecting the hematopoietic stem cells characterized by recurrent genetic abnormalities, myelodysplasia (a pathological definition of abnormal bone marrow structure), ineffective hematopoiesis resulting in blood cytopenia, and a propensity to evolve into acute myelogenous leukemia. Although there is evidence that the accumulation of a set of genetic mutations is an essential event in MDS, there is an increased appreciation of the contribution of specific microenvironments, niches, in the pathogenesis of MDS and response to treatment. In physiologic hematopoiesis, niches are critical functional units that maintain hematopoietic stem and progenitor cells and regulate their maturation into mature blood cells. In MDS and other hematological malignancies, altered bone marrow niches can promote the survival and expansion of mutant hematopoietic clones and provide a shield from therapy. In this review, we focus on our understanding of the composition and function of hematopoietic niches and their role in the evolution of myeloid malignancies, with an emphasis on MDS.
Keywords
Hematological malignancies
/
endothelial cells
/
stromal cells
/
bone marrow niches
/
microenvironment
/
angiogenesis
/
inflammation
/
hypoxia
Cite this article
Download citation ▾
Giovanna Tosato, Jing-Xin Feng, Hidetaka Ohnuki, Minji Sim.
Bone marrow niches in myelodysplastic syndromes.
Journal of Cancer Metastasis and Treatment, 2021, 7: 52 DOI:10.20517/2394-4722.2021.120
| [1] |
Arber DA,Hasserjian R.The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.Blood2016;127:2391-405
|
| [2] |
Acar M,Murphy MM.Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal.Nature2015;526:126-30 PMCID:PMC4850557
|
| [3] |
Beerman I,Singbrant S,Méndez-Ferrer S.The evolving view of the hematopoietic stem cell niche.Exp Hematol2017;50:22-6 PMCID:PMC5466495
|
| [4] |
Kunisaki Y,Scheiermann C.Arteriolar niches maintain haematopoietic stem cell quiescence.Nature2013;502:637-43 PMCID:PMC3821873
|
| [5] |
Kusumbe AP,Adams RH.Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.Nature2014;507:323-8 PMCID:PMC4943525
|
| [6] |
Falkowski M,Hansen B.Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces.Histochem Cell Biol2003;120:361-9
|
| [7] |
Baryawno N,Kowalczyk MS.A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia.Cell2019;177:1915-1932.e16 PMCID:PMC6570562
|
| [8] |
Ding L,Enikolopov G.Endothelial and perivascular cells maintain haematopoietic stem cells.Nature2012;481:457-62 PMCID:PMC3270376
|
| [9] |
Omatsu Y,Kohara H.The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche.Immunity2010;33:387-99
|
| [10] |
Mende N,Percin GI.Prospective isolation of nonhematopoietic cells of the niche and their differential molecular interactions with HSCs.Blood2019;134:1214-26
|
| [11] |
Itkin T,Spencer JA.Distinct bone marrow blood vessels differentially regulate haematopoiesis.Nature2016;532:323-8 PMCID:PMC6450701
|
| [12] |
García-García A,García-Fernández M.Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes.Blood2019;133:224-36 PMCID:PMC6449569
|
| [13] |
Méndez-Ferrer S,Battista M.Haematopoietic stem cell release is regulated by circadian oscillations.Nature2008;452:442-7
|
| [14] |
Zhao M,Venkatraman A.N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells.Cell Rep2019;26:652-669.e6 PMCID:PMC6890378
|
| [15] |
Sugiyama T,Noda M.Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches.Immunity2006;25:977-88
|
| [16] |
Taichman RS.Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor.J Exp Med1994;179:1677-82 PMCID:PMC2191506
|
| [17] |
Zhang J,Ye L.Identification of the haematopoietic stem cell niche and control of the niche size.Nature2003;425:836-41
|
| [18] |
Calvi LM,Weibrecht KW.Osteoblastic cells regulate the haematopoietic stem cell niche.Nature2003;425:841-6
|
| [19] |
Arai F,Ohmura M.Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche.Cell2004;118:149-61
|
| [20] |
Yoshihara H,Hosokawa K.Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche.Cell Stem Cell2007;1:685-97
|
| [21] |
Adams GB,Alley IR.Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor.Nature2006;439:599-603
|
| [22] |
Méndez-Ferrer S,Ferraro F.Mesenchymal and haematopoietic stem cells form a unique bone marrow niche.Nature2010;466:829-34 PMCID:PMC3146551
|
| [23] |
Saçma M,Bogeska R.Haematopoietic stem cells in perisinusoidal niches are protected from ageing.Nat Cell Biol2019;21:1309-20
|
| [24] |
Pinho S,Yang E,Nerlov C.Lineage-biased hematopoietic stem cells are regulated by distinct niches.Dev Cell2018;44:634-41.e4 PMCID:PMC5886750
|
| [25] |
Miller JP.The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors.J Immunol2003;171:2326-30
|
| [26] |
Min H,Dorshkind K.Effects of aging on the common lymphoid progenitor to pro-B cell transition.J Immunol2006;176:1007-12
|
| [27] |
Baccin C,Velten L.Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization.Nat Cell Biol2020;22:38-48 PMCID:PMC7610809
|
| [28] |
Yamazaki S,Karlsson G.Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche.Cell2011;147:1146-58
|
| [29] |
Bruns I,Pinho S.Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion.Nat Med2014;20:1315-20 PMCID:PMC4258871
|
| [30] |
Zhao M,Marshall H.Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells.Nat Med2014;20:1321-6
|
| [31] |
Nakamura-Ishizu A,Kobayashi H,Suda T.CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow.J Exp Med2015;212:2133-46 PMCID:PMC4647260
|
| [32] |
Kinashi T.Steel factor and c-kit regulate cell-matrix adhesion.Blood1994;83:1033-8
|
| [33] |
Post Y.Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis.Cell Stem Cell2019;25:174-83
|
| [34] |
Asada N,Pierce H.Differential cytokine contributions of perivascular haematopoietic stem cell niches.Nat Cell Biol2017;19:214-23 PMCID:PMC5467892
|
| [35] |
Comazzetto S,Berto S,Zhao Z.Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow.Cell Stem Cell2019;24:477-486.e6 PMCID:PMC6813769
|
| [36] |
Dührsen U.Stromal abnormalities in neoplastic bone marrow diseases.Ann Hematol1996;73:53-70
|
| [37] |
Bowman RL,Levine RL.Clonal hematopoiesis and evolution to hematopoietic malignancies.Cell Stem Cell2018;22:157-70 PMCID:PMC5804896
|
| [38] |
Pronk E.The mesenchymal niche in MDS.Blood2019;133:1031-8
|
| [39] |
Raaijmakers MH,Guo S.Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia.Nature2010;464:852-7 PMCID:PMC3422863
|
| [40] |
Santamaría C,Rosón B.Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients.Haematologica2012;97:1218-24 PMCID:PMC3409820
|
| [41] |
Zambetti NA,Chen S.Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia.Cell Stem Cell2016;19:613-27
|
| [42] |
Cazzola M.Myelodysplastic syndromes.N Engl J Med2020;383:2590
|
| [43] |
Kode A,Mosialou I.Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts.Nature2014;506:240-4 PMCID:PMC4116754
|
| [44] |
Wang J,Anastasi J,Qian Z.Haploinsufficiency of Apc leads to ineffective hematopoiesis.Blood2010;115:3481-8 PMCID:PMC3372947
|
| [45] |
Lane SW,Al-Shahrour F.The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS.Blood2010;115:3489-97 PMCID:PMC2867262
|
| [46] |
Li L,Li W.β-Catenin is a candidate therapeutic target for myeloid neoplasms with del(5q).Cancer Res2017;77:4116-26 PMCID:PMC5559383
|
| [47] |
Rupec RA,Rebholz B.Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha.Immunity2005;22:479-91
|
| [48] |
Walkley CR,Sims NA,Orkin SH.Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment.Cell2007;129:1081-95 PMCID:PMC2768301
|
| [49] |
Kim YW,Jeong HW.Defective Notch activation in microenvironment leads to myeloproliferative disease.Blood2008;112:4628-38
|
| [50] |
Zimmer SN,Zhou T.Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis.Blood2011;118:69-79 PMCID:PMC3139388
|
| [51] |
Walkley CR,Dworkin S.A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency.Cell2007;129:1097-110 PMCID:PMC1974882
|
| [52] |
Dong L,Zheng H.Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment.Nature2016;539:304-8 PMCID:PMC5317374
|
| [53] |
Tartaglia M,Goldberg R.Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.Nat Genet2001;29:465-8
|
| [54] |
Tartaglia M,Fragale A.Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.Nat Genet2003;34:148-50
|
| [55] |
Blau O,Hofmann WK.Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts.Blood2011;118:5583-92 PMCID:PMC3217359
|
| [56] |
Blau O,Baldus CD.Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia.Exp Hematol2007;35:221-9
|
| [57] |
Huang JC,Zhao X.Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration.Blood Cancer J2015;5:e302 PMCID:PMC4450324
|
| [58] |
Kim YG,Park TS,Yoon HJ.Therapy-related myelodysplastic syndrome/acute myeloid leukemia with del(7)(q22) in a patient with de novo AML.Ann Clin Lab Sci2011;41:79-83
|
| [59] |
Sala-Torra O,Loken MR.Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation.Biol Blood Marrow Transplant2006;12:511-7
|
| [60] |
Aanei CM,Eloae FZ.Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes.Stem Cells Dev2012;21:1604-15 PMCID:PMC3376465
|
| [61] |
Castells M,Delord JP.Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death.Int J Mol Sci2012;13:9545-71 PMCID:PMC3431813
|
| [62] |
Flores-Figueroa E,Flores-Guzmán P.Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells.Leuk Res2008;32:1407-16
|
| [63] |
Geyh S,Cadeddu RP.Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells.Leukemia2013;27:1841-51
|
| [64] |
Hanoun M,Mizoguchi T.Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche.Cell Stem Cell2014;15:365-75 PMCID:PMC4156919
|
| [65] |
Medyouf H,Jann JC.Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit.Cell Stem Cell2014;14:824-37
|
| [66] |
Poon Z,Venkatesan SS.Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy.Leukemia2019;33:1487-500 PMCID:PMC6756222
|
| [67] |
Schepers K,Passegué E.Normal and leukemic stem cell niches: insights and therapeutic opportunities.Cell Stem Cell2015;16:254-67 PMCID:PMC4391962
|
| [68] |
Duarte D,Akinduro O.Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML.Cell Stem Cell2018;22:64-77.e6 PMCID:PMC5766835
|
| [69] |
Muntión S,Diez-Campelo M.Microvesicles from mesenchymal stromal cells are involved in HPC-microenvironment crosstalk in myelodysplastic patients.PLoS One2016;11:e0146722 PMCID:PMC4737489
|
| [70] |
Ben-Batalla I,Wroblewski M.Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma.Blood2013;122:2443-52
|
| [71] |
Huan J,Shurtleff MJ.RNA trafficking by acute myelogenous leukemia exosomes.Cancer Res2013;73:918-29
|
| [72] |
Kumar B,Weng L.Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion.Leukemia2018;32:575-87 PMCID:PMC5843902
|
| [73] |
Doron B,Butler JT,Horton TM.Transmissible ER stress reconfigures the AML bone marrow compartment.Leukemia2019;33:918-30 PMCID:PMC6411460
|
| [74] |
Marlein CR,Piddock RE.NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.Blood2017;130:1649-60
|
| [75] |
Arranz L,Martín-Pérez D.Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms.Nature2014;512:78-81
|
| [76] |
Aguayo A,Manshouri T et al.Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes.Blood2000;96:2240-5
|
| [77] |
Hussong JW,Shami PJ.Evidence of increased angiogenesis in patients with acute myeloid leukemia.Blood2000;95:309-13
|
| [78] |
Kurata M,Nakagawa Y.Expression dynamics of drug resistance genes, multidrug resistance 1 (MDR1) and lung resistance protein (LRP) during the evolution of overt leukemia in myelodysplastic syndromes.Exp Mol Pathol2006;81:249-54
|
| [79] |
Medinger M,Gratwohl A.Angiogenesis and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status.Br J Haematol2009;146:150-7
|
| [80] |
Pruneri G,Soligo D.Angiogenesis in myelodysplastic syndromes.Br J Cancer1999;81:1398-401 PMCID:PMC2362976
|
| [81] |
Lundberg LG,Sundelin P,Folkman J.Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity.Am J Pathol2000;157:15-9 PMCID:PMC1850191
|
| [82] |
Passaro D,Abarrategi A.Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia.Cancer Cell2017;32:324-341.e6 PMCID:PMC5598545
|
| [83] |
Dias S,Heissig B.Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias.Proc Natl Acad Sci U S A2001;98:10857-62 PMCID:PMC58564
|
| [84] |
Forsythe JA,Iyer NV.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.Mol Cell Biol1996;16:4604-13 PMCID:PMC231459
|
| [85] |
Schliemann C,Thoennissen N.Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia.Leukemia2007;21:1901-6
|
| [86] |
Rouault-Pierre K,Foster K.HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress.Cell Stem Cell2013;13:549-63
|
| [87] |
Velasco-Hernandez T,Rehn M,Cammenga J.HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia.Blood2014;124:3597-607
|
| [88] |
Vukovic M,Sepulveda C.Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance.J Exp Med2015;212:2223-34 PMCID:PMC4689165
|
| [89] |
Bellamy WT,Frutiger Y.Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies.Cancer Res1999;59:728-33
|
| [90] |
Hassan HT.Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis.Acta Haematol1996;95:257-62
|
| [91] |
Poulos MG,Gutkin MC.Activation of the vascular niche supports leukemic progression and resistance to chemotherapy.Exp Hematol2014;42:976-986.e3 PMCID:PMC4254082
|
| [92] |
Ossenkoppele GJ,Stuessi G.Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) and Swiss Group for Clinical Cancer Research (SAKK)Lenalidomide added to standard intensive treatment for older patients with AML and high-risk MDS.Leukemia2020;34:1751-9
|
| [93] |
Saito Y,Tanaka S.Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML.Nat Biotechnol2010;28:275-80 PMCID:PMC3857633
|
| [94] |
Uy GL,Motabi IH.A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia.Blood2012;119:3917-24 PMCID:PMC3350358
|
| [95] |
Abraham M,Bulvik B.The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression.Leukemia2017;31:2336-46
|
| [96] |
Jin L,Zhai Q,Dick JE.Targeting of CD44 eradicates human acute myeloid leukemic stem cells.Nat Med2006;12:1167-74
|
| [97] |
Jacamo R,Wang Z.Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance.Blood2014;123:2691-702 PMCID:PMC3999754
|
| [98] |
Kannan S,Hall MG.Notch activation inhibits AML growth and survival: a potential therapeutic approach.J Exp Med2013;210:321-37 PMCID:PMC3570106
|
| [99] |
Laranjeira AB.Therapeutic target discovery and drug development in cancer stem cells for leukemia and lymphoma: from bench to the clinic.Expert Opin Drug Discov2016;11:1071-80
|
| [100] |
Granados-Principal S,Guevara ML.Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer.Breast Cancer Res2015;17:25 PMCID:PMC4384389
|
| [101] |
Karp JE,Pili R.Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab.Clin Cancer Res2004;10:3577-85
|
| [102] |
Ossenkoppele GJ,Maertens J.Addition of bevacizumab to chemotherapy in acute myeloid leukemia at older age: a randomized phase 2 trial of the Dutch-Belgian Cooperative Trial Group for Hemato-Oncology (HOVON) and the Swiss Group for Clinical Cancer Research (SAKK).Blood2012;120:4706-11
|
| [103] |
Müller A,Gaiser T.Expression of angiopoietin-1 and its receptor TEK in hematopoietic cells from patients with myeloid leukemia.Leuk Res2002;26:163-8
|
| [104] |
Reikvam H,Lassalle P,Ersvaer E.Targeting the angiopoietin (Ang)/Tie-2 pathway in the crosstalk between acute myeloid leukaemia and endothelial cells: studies of Tie-2 blocking antibodies, exogenous Ang-2 and inhibition of constitutive agonistic Ang-1 release.Expert Opin Investig Drugs2010;19:169-83
|
| [105] |
Lane SW,Lo Celso C.Differential niche and Wnt requirements during acute myeloid leukemia progression.Blood2011;118:2849-56 PMCID:PMC3172801
|