Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: a review

Diqing Su , Kai Wu , Renata Saha , Jinming Liu , Jian-Ping Wang

Journal of Cancer Metastasis and Treatment ›› 2020, Vol. 6 : 19

PDF
Journal of Cancer Metastasis and Treatment ›› 2020, Vol. 6:19 DOI: 10.20517/2394-4722.2020.48
Review
review-article

Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: a review

Author information +
History +
PDF

Abstract

Liquid biopsy has become an emerging technology in the detection of cancer related biomarkers as well as the continuous monitoring of cancer treatment. There has been extensive research on the applications of magnetic nanotechnologies in liquid biopsies from the separation of target analytes to the detection of cancer biomarkers. Magnetic separation plays an important role in increasing both the efficiency and sensitivity of the liquid biopsy process. The detection of cancer biomarkers through magnetic nanosensors also possesses many advantages such as low background noise, high sensitivity, short assay time, and the ability to detect multiple biomarkers at the same time. This review focuses on the recent advances of magnetic nanotechnologies in liquid biopsies for cancer detection and its future potential in comparison with other technologies.

Keywords

Liquid biopsy / magnetic / cancer / nanotechnology / biosensor

Cite this article

Download citation ▾
Diqing Su, Kai Wu, Renata Saha, Jinming Liu, Jian-Ping Wang. Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: a review. Journal of Cancer Metastasis and Treatment, 2020, 6: 19 DOI:10.20517/2394-4722.2020.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Definition of liquid biopsy n.d. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy. [Last accessed on 30 Jun 2020]

[2]

Castro-Giner F,Donato C,Quagliata L.Cancer diagnosis using a liquid biopsy: challenges and expectations..Diagnostics (Basel)2018;8:31 PMCID:PMC6023445

[3]

Ghosh RK,Dey P.Liquid biopsy: a new avenue in pathology..Cytopathology2019;30:138-43

[4]

Snow A,Lang JE.The current status of the clinical utility of liquid biopsies in cancer..Expert Rev Mol Diagn2019;19:1031-41 PMCID:PMC6981296

[5]

Siravegna G,Siena S.Integrating liquid biopsies into the management of cancer..Nat Rev Clin Oncol2017;14:531-48

[6]

Loeian MS,Farhadi F,Yang HW.Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs with high purity using preferential adherence in breast cancer patients..Lab Chip2019;19:1899-915

[7]

Yu Y,Ding J,Li C.Design of a biocompatible and ratiometric fluorescent probe for the capture, detection, release, and reculture of rare number CTCs..Anal Chem2018;90:13290-8

[8]

Kim DM,Jung W,Kim DE.Fluorometric detection of EGFR exon 19 deletion mutation in lung cancer cells using graphene oxide..Analyst2018;143:1797-804

[9]

Tang Z,He H,Wang K.Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis..Coordination Chemistry Reviews2020;415:213317

[10]

Shields Iv CW,Ohiri KA,Yellen BB.Magnetic separation of acoustically focused cancer cells from blood for magnetographic templating and analysis..Lab Chip2016;16:3833-44

[11]

Tang M,Wu LL,Hu J.A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells..Lab Chip2016;16:1214-23

[12]

Zhang Q,Huang S,Tan T.Capture and selective release of multiple types of circulating tumor cells using smart DNAzyme probes..Chem Sci2020;11:1948-56

[13]

Gao Y.Nanotechnology for the detection and kill of circulating tumor cells..Nanoscale Res Lett2014;9:500 PMCID:PMC4174536

[14]

Aghaamoo M,Chen X.Deformability-based circulating tumor cell separation with conical-shaped microfilters: concept, optimization, and design criteria..Biomicrofluidics2015;9:034106 PMCID:PMC4457662

[15]

Gwak H,Kashefi-Kheyrabadi L,Hyun KA.Progress in circulating tumor cell research using microfluidic devices..Micromachines (Basel)2018;9:353 PMCID:PMC6082257

[16]

Yu X,Zhang N,Chen H.Capture and release of cancer cells by combining on-chip purification and off-chip enzymatic treatment..ACS Appl Mater Interfaces2015;7:24001-7

[17]

Gurudatt NG,Kim JM,Jung DK.Separation detection of different circulating tumor cells in the blood using an electrochemical microfluidic channel modified with a lipid-bonded conducting polymer..Biosens Bioelectron2019;146:111746

[18]

Bruus H.Theoretical microfluidics.2008;OxfordUniversity Press Oxford

[19]

Liu J,Wu K.High-moment magnetic nanoparticles..J Nanopart Res2020;22:66

[20]

Liang C,Luo J.A novel method to detect functional microRNA regulatory modules by bicliques merging..IEEE/ACM Trans Comput Biol Bioinform2016;13:549-56

[21]

Miller A,Long R.La Crosse viral infection in hospitalized pediatric patients in Western North Carolina..Hosp Pediatr2012;2:235-42

[22]

Bai J,Thomas J.(FeCo) 3 Si-SiO x core-shell nanoparticles fabricated in the gas phase..Nanotechnology2007;18:065701

[23]

Wei X,Liu Y,Song Y.Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry..Chem Mater2008;20:6248-53

[24]

Chakka VM,Jin ZQ,Liu JP.Magnetic nanoparticles produced by surfactant-assisted ball milling..J Appl Phys2006;99:08E912

[25]

Chen P,Bhave G,Zhang X.Inkjet-print micromagnet array on glass slides for immunomagnetic enrichment of circulating tumor cells..Ann Biomed Eng2016;44:1710-20 PMCID:PMC4761332

[26]

Schreier S,Udomsangpetch R.Advances in rare cell isolation: an optimization and evaluation study..J Transl Med2017;15:6 PMCID:PMC5216602

[27]

Rao L,Huang Q,Yu GT.Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells..Adv Funct Mater2018;28:1803531

[28]

Earhart CM,Gaster RS,Wilson RJ.Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips..Lab Chip2014;14:78-88 PMCID:PMC4144998

[29]

McDonald JC.Poly(dimethylsiloxane) as a material for fabricating microfluidic devices..Acc Chem Res2002;35:491-9

[30]

Mcdonald JC,Anderson JR,Wu H.Fabrication of microfluidic systems in poly(dimethylsiloxane)..Electrophoresis2000;21:27-40

[31]

Chaudhury MK.Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives..Langmuir1991;7:1013-25

[32]

Hwang Y.Non-planar PDMS microfluidic channels and actuators: a review..Lab Chip2017;17:3948-59

[33]

Chen C,Munshi AS,Spence DM.3D-printed microfluidic devices: fabrication, advantages and limitations-a mini review..Anal Methods2016;8:6005-12 PMCID:PMC5012532

[34]

Gross BC,Meisel JE,Spence DM.Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis..Anal Chem2015;87:6335-41 PMCID:PMC5362108

[35]

Song S,Kim T,Jun S.A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process..Microfluid Nanofluid2010;9:533-40

[36]

He F,Xu Z,Xu J.Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser..Opt Lett2010;35:282-4

[37]

Inglis DW,Austin RH.Continuous microfluidic immunomagnetic cell separation..Appl Phys Lett2004;85:5093-5

[38]

Han K-H.A microfluidic system for continuous magnetophoretic separation of suspended cells using their native magnetic properties..Proc Nanotech2005;1:187-90

[39]

Afshar R,Lehnert T.Magnetic particle dosing and size separation in a microfluidic channel. Sensors and Actuators B:.Chemical2011;154:73-80

[40]

Brouzes E,Kimmerling R.Rapid and continuous magnetic separation in droplet microfluidic devices..Lab Chip2015;15:908-19 PMCID:PMC4323160

[41]

Weddemann A,Auge A.A hydrodynamic switch: Microfluidic separation system for magnetic beads..Appl Phys Lett2009;94:173501

[42]

Jung SH,Oh S,Um E.Advection flows-enhanced magnetic separation for high-throughput bacteria separation from undiluted whole blood..Small2018;14:e1801731

[43]

Hou Y,Zheng L.A microfluidic signal-off biosensor for rapid and sensitive detection of Salmonella using magnetic separation and enzymatic catalysis..Food Control2019;103:186-93

[44]

Khashan S,Mathew B.Mixture model for biomagnetic separation in microfluidic systems..J Magn Magn Mater2017;442:118-27

[45]

Wu J,Xuan S.Size-selective separation of magnetic nanospheres in a microfluidic channel..Microfluid Nanofluid2017;21:

[46]

Oh S,Seo H,Kim B.Magnetic activated cell sorting (MACS) pipette tip for immunomagnetic bacteria separation. Sensors and Actuators B:.Chemical2018;272:324-30

[47]

Gao R,deMello AJ.Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics..Lab Chip2016;16:1022-9

[48]

Su D,Saha R,Wang JP.Advances in Magnetoresistive Biosensors..Micromachines (Basel)2019;11:34 PMCID:PMC7019276

[49]

Srinivasan B,Jing Y,Yao X.A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine..Angew Chem Int Ed2009;48:2764-7

[50]

Wu K,Krishna VD,Perez AM.Portable GMR handheld platform for the detection of influenza A virus..ACS Sens2017;2:1594-601

[51]

Su D,Krishna VD,Liu J.Detection of influenza a virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system..Front Microbiol2019;10:1077 PMCID:PMC6536586

[52]

Thomson W.XIX. On the electro-dynamic qualities of metals:-Effects of magnetization on the electric conductivity of nickel and of iron..Proc R Soc Lond1857;8:546-50

[53]

Mott NF.The resistance and thermoelectric properties of the transition metals..Proc R Soc Lond A1936;156:368-82

[54]

Fert A.Electrical resistivity of ferromagnetic nickel and iron based alloys..J Phys F Met Phys1976;6:849

[55]

Snoek J.The Weiss-Heisenberg theory of ferro-magnetism and a new rule concerning magnetostriction and magnetoresistance..Nature1949;163:837

[56]

Baibich MN,Fert A,Petroff F.Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices..Phys Rev Lett1988;61:2472

[57]

Julliere M.Tunneling between ferromagnetic films..Physics Letters A1975;54:225-6

[58]

Parkin SS,Roche KP.Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr..Phys Rev Lett1990;64:2304-7

[59]

Parkin SS,Panchula A,Hughes B.Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers..Nat Mater2004;3:862-7

[60]

Chikkaveeraiah BV,Morgan NY,Chen X.Electrochemical immunosensors for detection of cancer protein biomarkers..ACS Nano2012;6:6546-61 PMCID:PMC3429657

[61]

Klein T,Yu L,Boylan KLM.Development of a multiplexed giant magnetoresistive biosensor array prototype to quantify ovarian cancer biomarkers..Biosens Bioelectron2019;126:301-7

[62]

Gao Y,Zhang L,Tao W.Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor..Biosens Bioelectron2019;123:204-10

[63]

Srinivasan B,Jing Y,Slaton J.A three-layer competition-based giant magnetoresistive assay for direct quantification of endoglin from human urine..Anal Chem2011;83:2996-3002

[64]

Osterfeld SJ,Gaster RS,Xu L.Multiplex protein assays based on real-time magnetic nanotag sensing..Proc Natl Acad Sci2008;105:20637-40 PMCID:PMC2602607

[65]

Zhu F,Ding Q,Ren L.2D magnetic MoS2-Fe3O4 hybrid nanostructures for ultrasensitive exosome detection in GMR sensor..Biosens Bioelectron2020;147:111787

[66]

Lei ZQ,Li GJ,Shi J.Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel junction sensors..J Appl Phys2012;111:07E505

[67]

Grancharov SG,Sun S,O’Brien S.Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor..J Phys Chem B2005;109:13030-5

[68]

Nesvet J,Wang SX.Highly sensitive detection of DNA hypermethylation in melanoma cancer cells..Biosens Bioelectron2019;124:136-42 PMCID:PMC6245664

[69]

Rizzi G,Dahl C,Dufva M.Simultaneous profiling of DNA mutation and methylation by melting analysis using magnetoresistive biosensor array..ACS Nano2017;11:8864-70 PMCID:PMC5810360

[70]

Dias TM,Martins SAM,Cardoso S.Implementing a strategy for on-chip detection of cell-free DNA fragments using GMR sensors: a translational application in cancer diagnostics using ALU elements..Anal Methods2016;8:119-28

[71]

Kricka LJ.Magnetism and magnetoresistance: attractive prospects for point-of-care testing?.Clin Chem2009;55:1058-60

[72]

Luppa PB,Schlichtiger A.Point-of-care testing (POCT): current techniques and future perspectives..TrAC Trends Anal Chem2011;30:887-98 PMCID:PMC7125710

[73]

Gani AW,Shi RZ,Nguyen M.An automated, quantitative, and multiplexed assay suitable for point-of-care hepatitis B virus diagnostics..Sci Rep2019;9:1-11 PMCID:PMC6821925

[74]

Xu L,Hao S,Brooks JD.Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulating autoantibodies..PLoS One2019;14: PMCID:PMC6690541

[75]

Lee JR,Miething C,Ruderman D.Longitudinal multiplexed measurement of quantitative proteomic signatures in mouse lymphoma models using magneto-nanosensors..Theranostics2018;8:1389 PMCID:PMC5835944

[76]

Ng E,Shultz TO,Wang SX.Magneto-nanosensor smartphone platform for the detection of HIV and leukocytosis at point-of-care..Nanomed Nanotechnol Biol Med2019;16:10-9

[77]

Ravi N,Chang SE,Utz PJ.Quantification of cDNA on GMR biosensor array towards point-of-care gene expression analysis..Biosens Bioelectron2019;130:338-43 PMCID:PMC6391206

[78]

Nair VS,Yu H,Wang SX.Validation of plasma TIMP-1 to identify lung cancer in smokers. D99. Clinically informative biomarkers in lung cancer: a needle in a haystack.2018;San DiegoAmerican Thoracic SocietyA7415

[79]

Zhou X,Hall DA.A CMOS magnetoresistive sensor front-end with mismatch-tolerance and sub-ppm sensitivity for magnetic immunoassays..IEEE Trans Biomed Circuits Syst2019;13:1254-63

[80]

Zhou X,Hall DA.11.4 A fast-readout mismatch-insensitive magnetoresistive biosensor front-end achieving Sub-ppm sensitivity. 2019 IEEE International Solid-State Circuits Conference-(ISSCC).2019;San FranciscoIEEE196-8

[81]

Ridgway JP.Cardiovascular magnetic resonance physics for clinicians: part I..J Cardiovasc Magn Reson2010;12:71 PMCID:PMC3016368

[82]

Wu K,Liu J,Wang JP.Magnetic nanoparticles in nanomedicine: a review of recent advances..Nanotechnology2019;30:502003

[83]

Lovchinsky I,Urbach E,Choi S.Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic..Science2016;351:836-41

[84]

Kabsch W.Nuclear magnetic resonance: Protein structure determination..Nature1986;321:469-70

[85]

Wilson MA.Applications of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter..J Soil Sci1981;32:167-86

[86]

Debette S,Duperron MG,Markus HS.Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis..JAMA Neurol2019;76:81-94 PMCID:PMC6439887

[87]

Willke P,Bae Y,Lutz CP.Magnetic resonance imaging of single atoms on a surface..Nat Phys2019;15:1005-10

[88]

Shao H,Liong M,Lee H.Magnetic nanoparticles for biomedical NMR-based diagnostics..Beilstein J Nanotechnol2010;1:142-54 PMCID:PMC3045933

[89]

Lee H,Ham D.Chip-NMR biosensor for detection and molecular analysis of cells..Nat Med2008;14:869 PMCID:PMC2729055

[90]

Lee H,Weissleder R.Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system..Angew Chem2009;121:5767-70 PMCID:PMC2453069

[91]

Zou D,Wu B,Chen X.Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance..Int Dairy J2019;91:82-8

[92]

Zhao Y,Jiang K,White WL.Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance..Food Control2017;71:110-6

[93]

Zhao Y,Xiao M,Lee CC.Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance..Food Control2013;34:436-43

[94]

Ma W,Qiao R,Yang C.Rapid and sensitive detection of microcystin by immunosensor based on nuclear magnetic resonance..Biosens Bioelectron2009;25:240-3

[95]

Ghazani AA,Gorbatov R,Weissleder R.Sensitive and direct detection of circulating tumor cells by multimarker µ-nuclear magnetic resonance..Neoplasia (New York, NY)2012;14:388

[96]

Khosravi F,Lambert C,Wickstrom E.Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip..Nanotechnology2016;27:44LT03 PMCID:PMC5374058

[97]

Khosravi F,Panchapakesan B.Ultrasensitive label-free sensing of IL-6 Based on PASE functionalized carbon nanotube micro-arrays with RNA-aptamers as molecular recognition elements..Biosensors (Basel)2017;7:17 PMCID:PMC5487960

[98]

Salahandish R,Naghib SM,Zargartalebi H.Nano-biosensor for highly sensitive detection of HER2 positive breast cancer..Biosens Bioelectron2018;117:104-11

[99]

Tian S,Yang A,Yang M.A copper based enzyme-free fluorescence ELISA for HER2 detection..J Immunol Methods2017;451:78-82

[100]

Haun JB,Wang R,Marinelli BS.Micro-NMR for rapid molecular analysis of human tumor samples..Sci Transll Med2011;3:71ra16 PMCID:PMC3086073

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/