Metabolic alterations and the potential for targeting metabolic pathways in the treatment of multiple myeloma

Dustin Rizzieri , Barry Paul , Yubin Kang

Journal of Cancer Metastasis and Treatment ›› 2019, Vol. 5 : 26

PDF
Journal of Cancer Metastasis and Treatment ›› 2019, Vol. 5:26 DOI: 10.20517/2394-4722.2019.05
Review
review-article

Metabolic alterations and the potential for targeting metabolic pathways in the treatment of multiple myeloma

Author information +
History +
PDF

Abstract

Metabolism is defined as the collection of complex biochemical processes that living cells use to generate energy and maintain their growth and survival. Metabolism encompasses the synthesis and breakdown of glucose, fatty acids, and amino acids; the generation of energy (ATP); and oxidative phosphorylation. In cancer cells, metabolism can be commandeered to promote tumor growth and cellular proliferation. These alterations in metabolism have emerged as an additional hallmark of various cancers. In this review we focus on metabolic alterations in multiple myeloma (MM) - a malignancy of plasma cells - including derangements in glycolysis, gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and fatty acid/amino acid synthesis and degradation. Particular focus is given to metabolic alterations that contribute to myeloma cell growth, proliferation and drug resistance. Finally, novel approaches that target metabolic pathways for the treatment of MM are discussed.

Keywords

Metabolism / alterations / multiple myeloma / treatment

Cite this article

Download citation ▾
Dustin Rizzieri, Barry Paul, Yubin Kang. Metabolic alterations and the potential for targeting metabolic pathways in the treatment of multiple myeloma. Journal of Cancer Metastasis and Treatment, 2019, 5: 26 DOI:10.20517/2394-4722.2019.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Available from: https://seer.cancer.gov/. [Last accessed on 27 Mar 2019]

[2]

Latov N.Pathogenesis and therapy of neuropathies associated with monoclonal gammopathies..Ann Neurol.1995;37 Suppl 1:S32-42

[3]

Batuman V.The pathogenesis of acute kidney impairment in patients with multiple myeloma..Advances in Chronic Kidney Disease2012;19:282-6

[4]

Zhang J,Huang Z,Zhong Y.Light chain multiple myeloma, clinic features, responses to therapy and survival in a long-term study..World J Surg Oncol2014;12:234 PMCID:PMC4237965

[5]

Chawla SS,Dispenzieri A,Larson DR.Clinical course and prognosis of non-secretory multiple myeloma..Eur J Haematol2015;

[6]

Fonseca R,Drach J,Gutierrez N.International myeloma working group molecular classification of multiple myeloma: spotlight review..Leukemia2009;23:2210-21 PMCID:PMC2964268

[7]

Preston DL,Tomonaga M,Ron E.Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987..Radiat Res1994;137:S68-97

[8]

Landgren O,Turesson I,Goldin LR.Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States..Blood2006;107:904-6 PMCID:PMC1895893

[9]

Waxman AJ,Devesa SS,Weiss BM.Racial disparities in incidence and outcome in multiple myeloma: a population-based study..Blood2010;116:5501-6 PMCID:PMC3031400

[10]

Verma PS,Weiss BM.The impact of race on outcomes of autologous transplantation in patients with multiple myeloma..Am J Hematol2008;83:355-8

[11]

Larsson SC.Body mass index and risk of multiple myeloma: a meta-analysis..Int J Cancer2007;121:2512-6

[12]

Lauby-Secretan B,Loomis D,Bianchini F.Body fatness and cancer - viewpoint of the IARC Working Group..N Engl J Med2016;375:794-8

[13]

Wallin A.Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies..Eur J Cancer2011;47:1606-15

[14]

Renehan AG,Egger M,Zwahlen M.Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies..Lancet2008;371:569-78

[15]

Teras LR,Birmann BM,Wang SS.Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies..Br J Haematol2014;166:667-76 PMCID:PMC4134758

[16]

Chiu BC,Greenland P,Dyer A.Body mass index, abnormal glucose metabolism, and mortality from hematopoietic cancer..Cancer Epidemiol Biomarkers Prev2006;15:2348-54

[17]

Hales CM,Carroll MD,Ogden CL.Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016..JAMA2018;319:1723-5 PMCID:PMC5876828

[18]

Félix-Redondo FJ,Fernández-Bergés D.Cholesterol and cardiovascular disease in the elderly. Facts and Gaps..Aging Dis2013;4:154-69 PMCID:PMC3660125

[19]

Geiss LS,Cheng YJ,Barker L.Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, united states, 1980-2012..JAMA2014;312:1218-26

[20]

Akram M.Mini-review on glycolysis and cancer..J Cancer Educ2013;28:454-7

[21]

Wu C,Lange AJ.Regulation of glycolysis-role of insulin..Exp Gerontol2005;40:894-9

[22]

Moran LA, Horton HR, Scrimgeour KG, Perry MD. Principles of biochemistry. Available from: https://www.twirpx.com/file/718377/. [Last accessed on 27 Mar 2019]

[23]

Champe PC,Ferrier DR.Lippincott's illustrated reviews: biochemistry.2008;PhiladelphiaWolters Kluwer/Lippincott Williams & Wilkins

[24]

Potter M,Morten KJ.The Warburg effect: 80 years on..Biochemical Society Transactions2016;44:1499-505 PMCID:PMC5095922

[25]

DeBerardinis RJ,Daikhin E,Yudkoff M.Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis..Proc Natl Acad Sci U S A2007;104:19345-50 PMCID:PMC2148292

[26]

Vander Heiden MG,Thompson CB.Understanding the Warburg effect: the metabolic requirements of cell proliferation..Science2009;324:1029-33 PMCID:PMC2849637

[27]

Warburg O,Negelein E.The metabolism of tumors in the body..J Gen Physiol1927;8:519-30 PMCID:PMC2140820

[28]

Warburg O.The chemical constitution of respiration ferment..Science1928;68:437-43

[29]

Warburg O.On the origin of cancer cells..Science1956;123:309-14

[30]

Bischoff R.Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications..J Proteomics2012;75:2275-96

[31]

Kanarek N,Cantor JR,Chan SH.Histidine catabolism is a major determinant of methotrexate sensitivity..Nature2018;559:632-6 PMCID:PMC6082631

[32]

Hopkins BD,Du X,Li X.Suppression of insulin feedback enhances the efficacy of PI3K inhibitors..Nature2018;560:499-503 PMCID:PMC6197057

[33]

Maddocks ODK,Cheung EC,Zhang T.Corrigendum: modulating the therapeutic response of tumours to dietary serine and glycine starvation..Nature2017;548:122

[34]

Steiner N,Hajek R,Borjan B.The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets..PLoS One2018;13:e0202045 PMCID:PMC6086450

[35]

Puchades-Carrasco L,Martinez-Lopez J,Mateos MV.Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission..Clin Cancer Res2013;19:4770-9

[36]

Ludwig C,Bartlett DB,McNee G.Alterations in bone marrow metabolism are an early and consistent feature during the development of MGUS and multiple myeloma..Blood Cancer J2015;5:e359 PMCID:PMC4635194

[37]

Gonsalves WI,Hitosugi T,Jevremovic D.Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies..JCI Insight2018;3:94543 PMCID:PMC5821206

[38]

Hossen MA,Waki M,Takei S.Decreased level of phosphatidylcholine (16:0/20:4) in multiple myeloma cells compared to plasma cells: a single-cell MALDI-IMS approach..Anal Bioanal Chem2015;407:5273-80

[39]

Zub KA,Sarno A,Demirovic A.Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells..PLoS One2015;10:e0119857 PMCID:PMC4358942

[40]

Soriano GP,Li N,Besse A.Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism..Leukemia2016;30:2198-207 PMCID:PMC5097071

[41]

Zaal EA,Jansen G,Cloos J.Bortezomib resistance in multiple myeloma is associated with increased serine synthesis..Cancer Metab2017;5:7 PMCID:PMC5575874

[42]

Maiso P,Moschetta M,Aljawai Y.Metabolic signature identifies novel targets for drug resistance in multiple myeloma..Cancer Res2015;75:2071-82 PMCID:PMC4433568

[43]

McDonald JE,Gardner MW,Ntambi JA.Assessment of total lesion glycolysis by (18)F FDG PET/CT significantly improves prognostic value of GEP and ISS in Myeloma..Clin Cancer Res2017;23:1981-7 PMCID:PMC5777601

[44]

Rodon J,Serra V.Development of PI3K inhibitors: lessons learned from early clinical trials..Nat Rev Clin Oncol2013;10:143-53

[45]

Hennessy BT,Ram PT,Mills GB.Exploiting the PI3K/AKT pathway for cancer drug discovery..Nat Rev Drug Discov2005;4:988-1004

[46]

Parsons R.Human cancer, PTEN and the PI-3 kinase pathway..Semin Cell Dev Biol2004;15:171-6

[47]

Lee JY,Cantley LC.Biochemistry. PI3K charges ahead..Science2007;317:206-7

[48]

Colla S,Donofrio G,Bolzoni M.Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138+ cells..Leukemia2010;24:1967

[49]

Gastelum G,Poteshkina A,Weckstein G.Targeting of the hypoxia-induced acid microenvironment of multiple myeloma cells increases hypoxia-mediated apoptosis..Blood2017;130:4376

[50]

Theodoropoulos VE,Sofras F,Tsoukala V.Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer..Eur Urol2004;46:200-8

[51]

Isobe T,Koufuji K,Kawahara A.Clinicopathological significance of hypoxia-inducible factor-1 alpha (HIF-1alpha) expression in gastric cancer..Int J Clin Oncol2013;18:293-304

[52]

Baba Y,Shima K,Chan AT.HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers..Am J Pathol2010;176:2292-301 PMCID:PMC2861094

[53]

Koukourakis MI,Sivridis E,Turley H.Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer..Int J Radiat Oncol Biol Phys2002;53:1192-202

[54]

Christofk HR,Harris MH,Gerszten RE.The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth..Nature2008;452:230

[55]

Gu Z,Xu H,Tricot G.NEK2 Promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase..J Hematol Oncol2017;10:17 PMCID:PMC5237262

[56]

Berg J,Stryer L.Gluconeogenesis and glycolysis are reciprocally regulated.2002;WH Freeman, New YorkBiochemistry

[57]

Zhang H,Chen Q,Feng J.PGC1beta regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism..Mol Oncol2018;12:1579-95 PMCID:PMC6120252

[58]

McBrayer SK,Singhal S,Rosen ST.Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy..Blood2012;119:4686-97 PMCID:PMC3367873

[59]

Dalva-Aydemir S,Martinez M,Kandela I.Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin..Clin Cancer Res2015;21:1161-71 PMCID:PMC5571862

[60]

Mathupala SP,Pedersen PL.Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Seminars in cancer biology.2009;Elsevier17-24 PMCID:PMC2714668

[61]

Liu Y,Shi L,Tao K.Prognostic significance of the metabolic marker hexokinase-2 in various solid tumors: a meta-analysis..PLoS One2016;11:e0166230 PMCID:PMC5100994

[62]

Nakano A,Nakamura S,Oda A.Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate..J Bioenerg Biomembr2012;44:31-8

[63]

El Arfani C,Maes K,Menu E.Metabolic features of multiple myeloma..Int J Mol Sci2018;19:E1200 PMCID:PMC5979361

[64]

Lis P,Niedzwiecka K,Pedersen PL.The HK2 dependent "Warburg Effect" and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate..Molecules2016;21:E1730 PMCID:PMC6273842

[65]

Hirschey MD,Diehl AME,Frezza C.Dysregulated metabolism contributes to oncogenesis..Semin Cancer Biol.2015;35 Suppl:S129-50 PMCID:PMC4656121

[66]

Demel HR,Piontek G,Blechert B.Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells..Am J Cancer Res2015;5:1649-64 PMCID:PMC4497433

[67]

Shanmugam M,Qian J,Avram MJ.Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine..J Biol Chem2009;284:26816-30 PMCID:PMC2785370

[68]

Bajpai R,Wei C,Von Hollen HE.Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax..Oncogene2016;35:3955-64 PMCID:PMC5025767

[69]

Beckermann KE,Rathmell JC.Dysfunctional T cell metabolism in the tumor microenvironment..Cytokine Growth Factor Rev2017;35:7-14 PMCID:PMC5710836

[70]

Terunuma A,Mishra P,Dorsey TH.MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis..J Clin Invest2014;124:398-412 PMCID:PMC3871244

[71]

Yuneva M,Oefner P,Lazebnik Y.Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells..J Cell Biol2007;178:93-105 PMCID:PMC2064426

[72]

Effenberger M,Kunz V,Leich E.Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation..Oncotarget2017;8:85858-67 PMCID:PMC5689652

[73]

Bolzoni M,Accardi F,Airoldi I.Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target..Blood2016;128:667-79

[74]

Isoda A,Iwashina M,Tominaga H.Expression of L-type amino acid transporter 1 (LAT1) as a prognostic and therapeutic indicator in multiple myeloma..Cancer Sci2014;105:1496-502 PMCID:PMC4462375

[75]

Jurczyszyn A,Gdula-Argasinska J,Biesiada G.Erythrocyte membrane fatty acids in multiple myeloma patients..Leuk Res2014;38:1260-5

[76]

Jurczyszyn A,Gdula-Argasinska J,Czapkiewicz A.Plasma fatty acid profile in multiple myeloma patients..Leuk Res2015;39:400-5

[77]

Berge K,Bohov P,Berge RK.Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation..J Lipid Res2003;44:118-27

[78]

Samudio I,Fiegl M,Konopleva M.Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction..The J Clin Invest2010;120:142-56 PMCID:PMC2799198

[79]

Tirado-Vélez JM,Sáez-Benito A,Perdomo G.Inhibition of fatty acid metabolism reduces human myeloma cells proliferation..PLoS One2012;7:e46484 PMCID:PMC3460894

[80]

O’Connor RS,Ghassemi S,Worth AJ.The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations..Sci Rep2018;8:6289 PMCID:PMC5908836

[81]

Bullwinkle EM,Bonan NF,Davison SP.Adipocytes contribute to the growth and progression of multiple myeloma: unraveling obesity related differences in adipocyte signaling..Cancer Lett2016;380:114-21

[82]

Dimopoulos MA,Smith TL.HIgh serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma..Ann Intern Med1991;115:931-5

[83]

Moreau P,Sonneveld P,Attal M.Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early mm progression-related death..J Clin Oncol2014;32:2173-80 PMCID:PMC4879712

[84]

Marin-Hernandez A,Ralph SJ,Moreno-Sanchez R.HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms..Mini Rev Med Chem2009;9:1084-101

[85]

Brown CO,Wagner BA,Singh N.Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase..Biochem J2012;444:515-27 PMCID:PMC3365439

[86]

Azab AK,Quang P,Pitsillides C.Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features..Blood2012;119:5782-94 PMCID:PMC3382938

[87]

Ye LY,Bai XL,Zhang Q.Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis..Cancer Res2016;76:818-30

[88]

Giuliani N,Bolzoni M,Bonomini S.Angiogenesis and multiple myeloma..Cancer Microenviron2011;4:325-37 PMCID:PMC3234322

[89]

Otjacques E,Noel A,Cataldo D.Biological aspects of angiogenesis in multiple myeloma..Int J Hematol2011;94:505-18

[90]

Fujiwara S,Kawano Y,Kikukawa Y.Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1..Exp Hematol Oncol2015;4:12 PMCID:PMC4407384

[91]

Walters DK,Jelinek DF.CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells..Cell Cycle2013;12:3175-83 PMCID:PMC3865013

[92]

Huber V,Berzi A,Lugini L.Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in cancer biology.2017;Elsevier74-89

[93]

Molina JR,Protopopova M,Bandi M.An inhibitor of oxidative phosphorylation exploits cancer vulnerability..Nat Med2018;

[94]

Yang H,Sekihara K,Ma H.Novel oxidative phosphorylation inhibitor IACS-010759 induces AMPK-dependent apoptosis of AML cells..Blood2017;130:1245

[95]

Arihara Y,Kamihara Y,Nakamura H.Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma..Oncotarget2017;8:65889-99 PMCID:PMC5630380

[96]

Johnson WD,Detrisac CJ,Kopelovich L.Subchronic oral toxicity and metabolite profiling of the p53 stabilizing agent, CP-31398, in rats and dogs..Toxicology2011;289:141-50 PMCID:PMC3195508

[97]

Kühnel A,Nogai KA.The Warburg effect in multiple myeloma and its microenvironment..Arch Med Res2017;5:

[98]

Biondo PD,Sawyer MB.The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy..J Nutr Biochem2008;19:787-96

[99]

Hajjaji N.Selective sensitization of tumors to chemotherapy by marine-derived lipids: a review..Cancer Treat Rev2013;39:473-88

[100]

de Aguiar Pastore Silva J,Waitzberg DL.Omega-3 supplements for patients in chemotherapy and/or radiotherapy: a systematic review..Clin Nutr2015;34:359-66

[101]

Merendino N,Manzi L,D'Eliseo D.Dietary omega -3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer..Biomed Res Int2013;2013:310186 PMCID:PMC3676987

[102]

Siddiqui RA,Xu Z,Walker C.Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects..Biofactors2011;37:399-412

[103]

Wang J,Li S.The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs..Expert Opin Drug Deliv2012;9:1-7

[104]

Abdi J,Faber J.Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells..J Nutr Biochem2014;25:1254-62

[105]

Dai X,Geng F.Omega-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid enhance dexamethasone sensitivity in multiple myeloma cells by the p53/miR-34a/Bcl-2 axis..Biochemistry (Moscow)2017;82:826-33

[106]

Kumar GS.Cytotoxic action of alpha-linolenic and eicosapentaenoic acids on myeloma cells in vitro..Prostaglandins, leukotrienes and essential fatty acids1997;56:285-93

[107]

Wang WQ,Wang HY.Increased fatty acid synthase as a potential therapeutic target in multiple myeloma..J Zhejiang Univ Sci B2008;9:441-7 PMCID:PMC2408696

[108]

Sanchez WY,Connor T,Wilkinson A.Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib..Br J Cancer2013;108:1624-33 PMCID:PMC3668464

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/