Prostate cancer cells at a therapeutic gunpoint of the autophagy process

Fabio Gabriele , Carolina Martinelli , Sergio Comincini

Journal of Cancer Metastasis and Treatment ›› 2018, Vol. 4 : 17

PDF
Journal of Cancer Metastasis and Treatment ›› 2018, Vol. 4:17 DOI: 10.20517/2394-4722.2018.06
Review
review-article

Prostate cancer cells at a therapeutic gunpoint of the autophagy process

Author information +
History +
PDF

Abstract

In a normal prostate, the process of controling cell death is essential to maintain tissue homeostasis and its inhibition may lead to the development of cancer. Androgen receptor signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer. The main treatment for prostate cancer is a combination of androgen deprivation therapy (ADT) using anti-androgens and docetaxil administration. However, ADT eventually fails due to a pathological unbalance of cell death processes, in particular apoptosis and autophagy. As a result prostate tumors may re-grow and progress into the castration resistant stage. The role of autophagy in tumorigenesis is complex and it could be a double-edged sword process, as autophagy defects promote cancer progression in association with various dangerous cellular processes, while functional autophagy enables cancer cell survival under stress and likely contributes to the resistance of treatment. Autophagy is often impaired in prostate cancer, due to either activation of the Akt/mTOR pathway, which normally inhibits autophagy, or through allelic loss of Beclin-1 (BECN1), an essential autophagy gene. In particular, elucidating the interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets and to develop synthetically lethal treatment strategies that preferentially target cancer cells, while sparing normal tissues.

Keywords

Prostate cancer / autophagy / androgen deprivation therapy / mTOR / autophagosome / LC3-II / Beclin-1

Cite this article

Download citation ▾
Fabio Gabriele, Carolina Martinelli, Sergio Comincini. Prostate cancer cells at a therapeutic gunpoint of the autophagy process. Journal of Cancer Metastasis and Treatment, 2018, 4: 17 DOI:10.20517/2394-4722.2018.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel R,Brawley O.Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths..CA Cancer J Clin2011;61:212-36

[2]

Baade PD,Krnjacki LJ.International epidemiology of prostate cancer: geographical distribution and secular trends..Mol Nutr Food Res2009;53:171-84

[3]

Aus G,Bolla M,Schmid HP,Wolff J.EAU Guidelines on prostate cancer..Eur Urol2005;48:546-51

[4]

Borley N.Prostate cancer: diagnosis and staging..Asian J Androl2009;11:74-80 PMCID:PMC3735216

[5]

Steinberg GD,Beaty TH,Walsh PC.Family history and the risk of prostate cancer..Prostate1990;17:337-47

[6]

Lichtenstein P,Verkasalo PK,Kaprio J,Pukkala E,Hemminki K.Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland..N Engl J Med2000;343:78-85

[7]

Struewing JP,Wacholder S,Berlin M,Timmerman MM,Tucker MA.The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews..N Engl J Med1997;336:1401-8

[8]

Gallagher RP.Prostate cancer: 3. Individual risk factors..CMAJ1998;159:807-13 PMCID:PMC1232741

[9]

Eeles RA,Giles GG,Guy M,Mulholland S,Edwards SM,Field HI,Severi G,Hamdy FC,Muir KR,Bagnato M,Hall AL,Gehr-Swain BN,Cox A,Brown PM,Tymrakiewicz M,Bryant SL.Multiple newly identified loci associated with prostate cancer susceptibility..Nat Genet2008;40:316-21

[10]

Li Q,Zhu Y,Yang Y,Jin L,Shi TY,Zhou X,Wei Q.Polymorphisms in the mTOR gene and risk of sporadic prostate cancer in an Eastern Chinese population..PLoS One2013;8:e71968 PMCID:PMC3734314

[11]

Chuang AY,Veltri RW,Bieberich CJ.Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma..Am J Surg Pathol2007;31:1246-55

[12]

Catz SD.BCL-2 in prostate cancer: a minireview..Apoptosis2003;8:29-37

[13]

Chakravarthi S,Thanikachalam P,Bukhari NI.Assessment of proliferative index and its association with Ki-67 antigen molecule expression in nodular hyperplasia of prostate..Indian J Sci Technol2009;2:1-4

[14]

Ramsay AK,Soofi M,Yu AX,Morland R,Nixon C,Nuttall RK,Marquez R,Leung HY.ERK5 signalling in prostate cancer promotes an invasive phenotype..Br J Cancer2011;104:664-72 PMCID:PMC3049582

[15]

Ling Z,Zhang G,Xiang P,Han C.miR-361-5p modulates metabolism and autophagy via the Sp1-mediated regulation of PKM2 in prostate cancer..Onco Rep2017;38:1621-8

[16]

Wang R,Saramäki O,Sutherland WM,Sen B,Mabjeesh N,Dong JT,Nelson PS,Zhau HE.PrLZ, a novel prostate-specific and androgen-responsive gene of the TPD52 family, amplified in chromosome 8q21.1 and overexpressed in human prostate cancer..Cancer Res2004;64:1589-94

[17]

Garber K.Energy deregulation: licensing tumors to grow..Science2006;312:1158-9

[18]

Liu Y.Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer..Prostate Cancer Prostatic Dis2006;9:230-4

[19]

Warburg O.On the origin of cancer cells..Science1956;123:309-14

[20]

Horoszewicz JS,Kawinski E,Rosenthal H,Mirand EA.LNCaP model of human prostatic carcinoma..Cancer Res1983;43:1809-18

[21]

Singh G,Laucirica R.Regulation of prostate cancer cell division by glucose..J Cell Physiol1999;180:431-8

[22]

Kaini RR,Zhaorigetu S.Autophagy regulates lipopysis and cell survival though lipid droplet degradation in androgen-sensitive prostate cance cells..Prostate2012;72:1412-22 PMCID:PMC3418419

[23]

DiPaola RS,Thalasila A,Doram D,Bray K,Beaudoin B,Stein M,White E.Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy..Prostate2008;68:1743-52 PMCID:PMC2855052

[24]

Swinnen JV,Verhoeven G.Increased lipogenesis in cancer cells: new players, novel targets..Curr Opin Clin Nutr Metab Care2006;9:358-65

[25]

Migita T,Fornari A,Priolo C,Inazuka F,Palescandolo E,Fiore C,Kung AL,Subramanian A,Ma J,Stampfer M,Finn S.Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer..J Natl Cancer Inst2009;101:519-32 PMCID:PMC2664091

[26]

Flavin R,Loda M.Metabolic alterations and targeted therapies in prostate cancer..J Pathol2011;223:283-94 PMCID:PMC3197856

[27]

Hatzivassiliou G,Bauer DE,Shaw AN,Hingorani SR,Thompson CB.ATP citrate lyase inhibition can suppress tumor cell growth..Cancer Cell2005;8:311-21

[28]

Beckers A,Timmermans L,Peeters A,Verhoeven G.Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells..Cancer Res2007;67:8180-7

[29]

Swinnen JV,Goossens K,Verhoeven G.Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP..Cancer Res1997;57:1086-90

[30]

Farese RVJr.Lipid droplets finally get a little R-E-S-P-E-C-T..Cell2009;139:855-60 PMCID:PMC3097139

[31]

Brasaemle DL.Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis..J Lipid Res2007;48:2547-59

[32]

Singh R,Wang Y,Novak I,Tanaka K,Czaja MJ.Autophagy regulates lipid metabolism..Nature2009;458:1131-5 PMCID:PMC2676208

[33]

Rodriguez-Navarro JA.Autophagy and lipids: tightening the knot..Semin Immunopathol2010;32:343-53

[34]

Fritz V,Rodier G,Iborra F.Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice..Mol Cancer Ther2010;9:1740-54 PMCID:PMC3315476

[35]

Rysman E,Scheys K,Derua R.De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation..Cancer Res2010;70:8117-26

[36]

Shi Y,Tennakoon JB,Merchant FA,Howe MK,Frigo DE.Androgens promote prostate cancer cell growth through induction of autophagy..Mol Endocrinol2013;27:280-95 PMCID:PMC3683804

[37]

Zheng X,Gao Z,Shi Y,Liu Y,Lin Y,Rao CV,Conney AH.Inhibitory effect of dietary atorvastatin and celecoxib together with voluntary running wheel exercise on the progression of androgen-dependent LNCaP prostate tumors to androgen independence..Exp Ther Med2011;2:221-8 PMCID:PMC3109910

[38]

Toepfer N,Parikh A,Yang W.Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription..Cancer Biol Thervol2011;12:691-9

[39]

Peng X,Yuan L,Kopelovich L.Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21..PLoS One2013;8:e70442 PMCID:PMC3731278

[40]

Kyprianou N,Isaacs JT.Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation..Cancer Res1990;50:3748-53

[41]

Dutt SS.Molecular mechanisms of castration-resistant prostate cancer progression..Future Oncol2009;5:1403-13 PMCID:PMC3041149

[42]

Gleave ME,Moore MJ.Prostate cancer: 9. Treatment of advanced disease..CMAJ1999;160:225-32 PMCID:PMC1229995

[43]

Boccon-Gibod L,Persson BE.An update on the use of gonadotropin-hormone antagonists in prostate cancer..Ther Adv Urol2011;3:127-40 PMCID:PMC3159401

[44]

Oudard S.Progress in emerging therapies for advanced prostate cancer..Cancer Treat Rev2013;39:275-89

[45]

Mostaghel EA,Lin DW,Coleman IM,Knudsen B,Nelson CC,Bremner WJ,Nelson PS.Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer..Cancer Res2007;67:5033-41

[46]

Saraon P,Diamandis EP.Molecular alterations during progression of prostate cancer to androgen independence..Clin Chem2011;57:1366-75

[47]

Knudsen KE.Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer..Clin Cancer Res2009;15:4792-8 PMCID:PMC2842118

[48]

Miyake H,Rennie PS.Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3'-kinase pathway..Endocrinology2000;141:2257-65

[49]

Rocchi P,Kojima S,Beraldi E,Hurtado-Coll A,Gleave M.Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer..Cancer Res2004;64:6595-602

[50]

Ziparo E,Marini ES,Conti S,Filippini A.Autophagy in prostate cancer and androgensuppressiontherapy..Int J Mol Sci2013;14:12090-106 PMCID:PMC3709775

[51]

Li M,Liu D,Gao GF.Autophagy protects LNCaP cells under androgen deprivation conditions..Autophagy2008;4:54-60

[52]

Bennett HL,O'Prey J,Leung HY.Androgens modulate autophagy and cell death via regulation of the endoplasmic reticulum chaperone glucose-regulated protein 78/BiP in prostate cancer cells..Cell Death Dis2010;1:e72 PMCID:PMC3032338

[53]

Mizushima N,Cuervo AM.Autophagy fights disease through cellular self-digestion..Nature2008;45:1069-75 PMCID:PMC2670399

[54]

Deter RL,De Duve C.Participation of lysosomes in cellular autophagy induced in rat liver by glucagon..J Cell Biol1967;35:C11-6 PMCID:PMC2107130

[55]

Cuervo AM.Autophagy: many paths to the same end..Mol Cell Biochem2004;263:55-72

[56]

Galluzzi L,Kepp O,Maiuri MC.To die or not to die: that is the autophagic question..Curr Mol Med2008;8:78-91

[57]

Levine B.Autophagy in the pathogenesis of disease..Cell2008;132:27-42 PMCID:PMC2696814

[58]

Klionsky DJ,Abeliovich H,Acevedo-Arozena A,Agholme L,Agostinis P,Ahn HJ,Ait-Si-Ali S,Akira S,Al-Zeer MA,Albin RL,Aleo MF,Almasan A,Amano A,Amarnath S,Andrieu-Abadie N,Ann DK,Aoki H,Arancia G,Asanuma K,Ashida H,Askew DS,Baba M,Baehrecke EH,Bai XY,Baiocchi R,Balduini W,Bamber BA,Bánhegyi G,Bassham DC,Batoko H,Beau I,Begley TJ,Behrends C,Bellaire B,Benetti L,Bernardi H,Besteiro S,Bi X,Blum JS,Bonaldo P,Bornhauser BC,Bossis I,Bourquin JP,Boyer-Guittaut M,Brady NR,Brech A,Brennand A,Brest P,Bristol ML,Brown EJ,Brunetti-Pierri N,Bulman DE,Bultynck G,Bursch W,Buzgariu W,Cadwell K,Cai D,Cai Q,Calvo-Garrido J,Campanella M,Candi E,Caplan AB,Cardoso SM,Carlin CR,Carneiro LA,Caruso RA,Casas C,Cebollero E,Celli J,Chae HJ,Chan DC,Chang RC,Chen CC,Chen GQ,Chen Q,Chen W,Chen X,Chen YG,Chen Y,Chen Z,Cheng CH,Cheong H,Cherry S,Cheung ZH,Chiang HL,Chiba T,Chiou SH,Cho CH,Choi AM,Choi KS,Chouaib S,Choubey V,Chuang TH,Chun T,Chye ML,Ciriolo MR,Clark RS,Clarke R,Coller HA,Comincini S,Condorelli F,Coombs GH,Corbalan R,Costelli P,Coto-Montes A,Coxon FP,Crespo JL,Cuervo AM,Czaja MJ,Darfeuille-Michaud A,Davies FE,de Groot JF,De Martino L,De Tata V,Degterev A,Delbridge LM,Deng YZ,Dent P,Deretic V,Devenish RJ,Di Paolo G,Díaz-Araya G,Diaz-Meco MT,Dikic I,Ding WX,Diwan A,Dokudovskaya S,Dorsey FC,Dowling JJ,Dreux M,Duan Q,Duff K,Durbeej M,Edelstein CL,Egea G,Eissa NT,El-Deiry WS,Elgendy M,Eng KE,Engelender S,Escalante R,Eskelinen EL,Espina V,Fan J,Fan Z,Fang Y,Fanzani A,Farré JC,Fechheimer M,Feng J,Feng Y,Feuer R,Fimia GM,Finkbeiner S,Finley KD,Fisher EA,Flajolet M,Florio S,Fornai F,Fotedar R,Fox HS,Frankel LB,Fuentes JM,Fujii J,Fujita E,Furukawa RH,Gailly P,Galliot B,Ganesh S,Ganley IG,Gao GF,Garcia L,Garcia-Marcos M,Gartel AL,Gautel M,Gegg ME,Germain M,Gewirtz DA,Ghosh P,Giatromanolaki AN,Gilkerson RW,Ginsberg HN,Goligorsky MS,Gomez-Manzano C,Gongora C,Gonzalez R,González-Polo RA,Gorbunov NV,Goruppi S,Gozuacik D,Grant GD,Gregorc A,Grose C,Gual P,Guan KL,Gukovskaya AS,Gunst J,Halayko AJ,Halonen SK,Han F,Hancock MK,Harada H,Hardt SE,Harris AL,Harris SD,Haspel JA,Hazelhurst LA,He YW,Heidenreich KA,Helgason GV,Herman B,Hetz C,Hill JA,Hofman P,Höhfeld J,Hong MH,Hotamisligil GS,Høyer-Hansen M,Hu CA,Hua Y,Huang J,Huang WP,Huh WK,Hupp TR,Hurley JB,Hussey PJ,Hwang S,Ilkhanizadeh S,Into T,Iovanna JL,Isaka Y,Isidoro C,Iwasaki A,Izumi Y,Jäättelä M,Jackson WT,Jendrach M,Jeung EB,Jiang H,Jiang M,Jiang X,Jiménez A,Jin S,Johansen T,Johnson GV,Joseph B,Joubert AM,Juillerat-Jeanneret L,Jung YK,Kaasik A,Kadowaki M,Kamada Y,Kampinga HH,Kang C,Kang KI,Kang YA,Kanneganti TD,Kanthasamy AG,Karantza V,Kaushik S,Ke PY,Kelekar A,Kessel DH,Kiel JA,Kihara A,Kim DH,Kim EK,Kim JS,Kim JC,Kim PK,Kim YS,Kimchi A,King JS,Kirkin V,Kitamoto K,Klein L,Klucken J,Ko BC,Koga H,Koh YH,Komatsu M,Kong HJ,Korolchuk VI,Koukourakis MI,Kovács AL,Krainc D,Kretz-Remy C,Kroemer G,Krut O,Kuan CY,Kumar A,Kumar S,Kung HJ,Kwon HJ,Lafont F,Landry J,Lapaquette P,László L,Lavoie JN,Lazo PA,Le Cam L,Lee AJ,Lee GM,Lee JH,Lee MS,Leeuwenburgh C,Legouis R,Lei HY,Leib DA,Lemasters JJ,Lesniak MS,Levenson VV,Levy E,Li JL,Li S,Li XJ,Li YP,Liang Q,Liberski PP,Lim HJ,Lim K,Lin FC,Lin JD,Lin WW,Lin YL,Lingor P,Lisanti MP,Liu B,Liu K,Liu QA,Liu YC,Lockshin RA,Lonial S,Lopez-Berestein G,Lossi L,Lőw P,Lu B,Lu Z,Lukacs NW,Lynch-Day MA,Macian F,Macleod KF,Maiuri L,Malagoli D,Malorni W,Mandelkow EM,Manov I,Mao X,Marambaud P,Marcel YL,Marchetti P,Marcondes M,Marfe G,Markaki M,Martin SJ,Martinet W,Masini M,Matsuo S,Mayer A,McConkey DJ,McDermott C,McInerney GM,McLaughlin B,McMaster CR,Meijer AJ,Meléndez A,Melino G,Menendez JA,Menon MB,Mercer CA,Merry DE,Meyer CG,Miao CY,Michels PA,Mijaljica D,Minucci S,Miranti CK,Miyazawa K,Mograbi B,Molero X,Mollinedo F,Monastyrska I,Monteiro MJ,Mora R,Moreira PI,Moscat J,Mottram JC,Moussa CE,Muller S,Münz C,Murphy ME,Mysorekar I,Nagata K,Nair U,Nakahira K,Nakatogawa H,Naqvi NI,Narita M,Nawrocki ST,Nemchenko A,Neufeld TP,Nezis IP,Nie D,Nislow C,Noda T,Nogalska A,Notterpek L,Nozaki T,Nürnberger T,Obara K,Oddo S,Ohashi T,Oleinick NL,Olsen LJ,Opota O,Ostrander GK,Ou JH,Overholtzer M,Paganetti P,Pallet N,Palumbo C,Panaretakis T,Papackova Z,Paris I,Park OK,Parzych KR,Patterson C,Pawelek JM,Perlmutter DH,Perry G,Peter M,Petersen M,Phang JM,Pierre P,Pierron G,Piras A,Platanias LC,Poirot M,Poüs C,Prætorius-Ibba M,Prescott M,Produit-Zengaffinen N,Proikas-Cezanne T,Przyklenk K,Puyal J,Qin L,Quaggin SE,Rabinowich H,Rahman I,Ramm G,Randow F,Rathmell JC,Ray SK,Reed JC,Régnier-Vigouroux A,Reiners JJJr,Ren J,Rhodes CJ,Rizzo E,Roberge M,Roccheri MC,Rodemann HP,Rohrer B,Rosen K,Rouis M,Rovetta F,Rubinsztein DC,Rucker EB3rd,Rudolf E,Russo R,Ryan KM,Sabatini DM,Saha T,Sakagami H,Salekdeh GH,Salvaterra PM,Salvioli R,Sánchez-Alcázar JA,Sandri M,Sansanwal P,Saran S,Sarwal M,Sasnauskiene A,Sato K,Schapira AH,Schätzl HM,Schiaffino S,Schneider ME,Schoenlein PV,Schüller C,Scorrano L,Seglen PO,Seiliez I,Sell C,Separovic D,Setoguchi T,Shacka JJ,Shapiro IM,Shaw RJ,Shen HM,Sheng ZH,Shibuya K,Shieh JJ,Shimada Y,Shintani T,Shore GC,Sidhu SB,Silva-Zacarin EC,Simon AK,Simone C,Sinclair DA,Sinha D,Sirko A,Sivridis E,Skulachev VP,Smaili SS,Soengas MS,Song X,Soong TW,Spector SA,Springer W,Stefanis L,Stendel R,Stephanou A,Sternberg C,Strålfors P,Sui X,Sun J,Sun ZJ,Suzuki K,Swanson MS,Sweeney ST,Szabadkai G,Taegtmeyer H,Takács-Vellai K,Takegawa K,Takeshita F,Tan KS,Tanaka K,Tang D,Tannous BA,Taylor GS,Taylor JP,Terman A,Thevissen K,Thorburn A,Tian F,Tocchini-Valentini G,Tomino Y,Tooze SA,Tower J,Trajkovic V,Tsai TF,Tsubata T,Turk B,Tyagi SC,Ueno T,Umemiya-Shirafuji R,Vaccaro MI,Van den Berghe G,van Doorn W,van Egmond M,Vandenabeele P,Vanhorebeek I,Velasco G,Vicencio JM,Vila M,Viola G,Voitsekhovskaja OV,Votruba M,Wade-Martins R,Walsh CM,Wan XB,Wang C,Wang F,Wang G,Wang HG,Wang J,Wang M,Wang X,Wang YJ,Wang Z,Wang Z,Ward DM,Waters SL,Wei L,Weiss WA,Wen LP,Whitton JL,Wileman T,Wilkinson S,Williams RL,Wouters BG,Wu DC,Wyttenbach A,Xi Z,Xiao G,Xie Z,Xu J,Xu X,Yamamoto A,Yamashita M,Yanagida M,Yang E,Yang SY,Yang WY,Yao MC,Yeganeh B,Yin JJ,Yoo OJ,Yoon SY,Yoshikawa Y,Yoshimoto K,Youle RJ,Yu L,Yu SW,Yuan ZM,Yun CH,Zabirnyk O,Zacks D,Zaffaroni N,Zeh HJ3rd,Zhang H,Zhang J,Zhang L,Zhang MY,Zhao M,Zhao Y,Zheng X,Zhong Q,Zhu C,Zhu XF,Zhu Y,Zong WX,Zschocke J.Guidelines for the use and interpretation of assays for monitoring autophagy..Autophagy2012;8:445-544 PMCID:PMC3404883

[59]

Jin S,Mathew R.Metabolic catastrophe as a means to cancer cell death..J Cell Sci2007;120:379-83 PMCID:PMC2857576

[60]

Mathew R,White E.Role of autophagy in cancer..Nat Rev Cancer2007;7:961-7 PMCID:PMC2866167

[61]

Zhu K,McConkey DJ.Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells..Oncogene2010;29:451-62 PMCID:PMC2809784

[62]

Mathew R,Beaudoin B,Bray K,Chen G,White E.Autophagy suppresses tumor progression by limiting chromosomal instability..Genes Dev2007;21:1367-81 PMCID:PMC1877749

[63]

Levine B.Development by self-digestion: molecular mechanisms and biological functions of autophagy..Dev Cell2004;6:463-77

[64]

Degenhardt K,Beaudoin B,Anderson D,Mukherjee C,Gélinas C,Nelson DA,White E.Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis..Cancer Cell2006;10:51-64 PMCID:PMC2857533

[65]

Palumbo S.Autophagy and ionizing radiation in tumor: the "survive or not survive" dilemma..J Cell Physiol2013;228:1-8

[66]

Qu X,Bhagat G,Hibshoosh H,Rosen J,Mizushima N,Cattoretti G.Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene..J Clin Invest2003;112:1809-20 PMCID:PMC297002

[67]

Dalby KN,Lopez-Berestein G.Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer..Autophagy2010;6:322-9 PMCID:PMC2914492

[68]

Kok K,Vanhaesebroeck B.Regulation of phosphoinositide 3-kinase expression in health and disease..Trends Biochem Sci2009;34:115-27

[69]

Chalhoub N.PTEN and the PI3-kinase pathway in cancer..Ann Rev Pathol2009;4:127-50 PMCID:PMC2710138

[70]

Markman B,Tabernero J.Targeting the PI3K/Akt/mTOR pathway--beyond rapalogs..Oncotarget2010;1:530-43 PMCID:PMC3248125

[71]

Davies BR,Dudley P,Yu DH,Li J,Ji Q,Ricketts SA,Cosulich S,Page K,Lane C,Luke R,Pass M.Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background..Mol Cancer Ther2012;11:873-87

[72]

Lamoureux F,Crafter C,Zhang F,Gleave ME.Blocked autophagy using lysosomotropic agents sensitizes resistant prostate tumor cells to the novel Akt inhibitor AZD5363..Clin Cancer Res2013;19:833-44

[73]

Romanelli F,Hoven AD.Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity..Curr Pharm Des2004;10:2643-8

[74]

Maclean KH,Cleveland JL.Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis..J Clin Invest2008;118:79-88 PMCID:PMC2148253

[75]

Amaravadi RK,Yin XM,Takebe N,DiPaola RS,White E.Principles and current strategies for targeting autophagy for cancer treatment..Clin Cancer Res2011;17:654-66 PMCID:PMC3075808

[76]

Maycotte P,Cummings CT,Morgan MJ.Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy..Autophagy2012;8:200-12 PMCID:PMC3336076

[77]

Hu C,Ulibarri G.The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine..Bioorg Med Chem2008;16:7888-93

[78]

Fan QW,Hackett C,Houseman BT,Haas-Kogan D,Oakes SA,Shokat KM.Akt and autophagy cooperate to promote survival of drug-resistant glioma..Sci Signal2010;3:ra81 PMCID:PMC3001107

[79]

Gibbs A,Deng V.Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6..Proc Natl Acad Sci U S A2009;106:16663-8 PMCID:PMC2757849

[80]

Vyas AR,Arlotti JA,Stolz DB,Amin S.Chemoprevention of prostate cancer by D,L-sulforaphane is augmented by pharmacological inhibition of autophagy..Cancer Res2013;73:5985-95 PMCID:PMC3790864

[81]

Chiavarina B,Martinez-Outschoorn UE,Birbe R,Pestell RG,Daniel R,Lisanti MP.Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated broblasts drives stromal nutrient production and tumor growth..Cancer Biol Ther2011;12:1101-13 PMCID:PMC3335944

[82]

Ahmad F,Joshi SD.G9a inhibition induced PKM2 regulates autophagic responses..Int J Biochem Cell Biol2016;78:87-95

[83]

Roy A,Kim OJ,Lynch S,Kumar D.Multiple roles of RARRES1 in prostate cancer: autophagy induction and angiogenesis inhibition..PLoS One2017;12:e0180344 PMCID:PMC5498036

[84]

Zeng J,Fan YZ,Li L.PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy..Theranostics2018;8:109-23 PMCID:PMC5743463

[85]

Bristol ML,Maycotte P,Chakradeo S.Autophagy inhibition for chemosensitization and radiosensitization in cancer: do the preclinical data support this therapeutic strategy?.J Pharmacol Exp Ther2013;344:544-52 PMCID:PMC3583507

[86]

He Z,Theriot CA,Wu H.Cell killing and radiosensitizing effects of atorvastatin in PC3 prostate cancer cells..J Radiat Res2012;53:225-33

[87]

Yang ZJ,Huang S.The role of autophagy in cancer: therapeutic implications..Mol Cancer Ther2011;10:1533-41 PMCID:PMC3170456

[88]

Schoenlein PV,Samaddar JS,Barrett JT.Autophagy facilitates the progression of ERalpha-positive breast cancer cells to antiestrogen resistance..Autophagy2009;5:400-3

[89]

Kaini RR.Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells..Biochem Biophys Res Commun2012;425:150-6

[90]

Bennett HL,Fleming JT,O'Prey J,Robson CN.Does androgen-ablation therapy (AAT) associated autophagy have a pro-survival effect in LNCaP human prostate cancer cells?.BJU Int2013;111:672-82

[91]

Cheong H,Lindsten T.Therapeutic targets in cancer cell metabolism and autophagy..Nat Biotechnol2012;30:671-8 PMCID:PMC3876738

[92]

Xing N,Mitchell SH.Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells..Carcinogenesis2001;22:409-14

[93]

Parikh A,Deitrick K,Rukstalis D.Statin-induced autophagy by inhibition of geranylgeranyl biosynthesis in prostate cencar PC3 cells..Prostate2010;70:971-81

[94]

Chhipa RR,Ip C.AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia..Cell Signal2011;23:1466-72 PMCID:PMC3115439

[95]

Jiang Q,Wang X,Zhang Q,Xia S.Targeting androgen receptor leads to suppression of prostate cancer via induction of autophagy..J Urol2012;188:1361-8

[96]

Jain RK,Sckell A,Jiang P,Yuan F.Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor..Proc Natl Acad Sci U S A1998;95:10820-5 PMCID:PMC27979

[97]

Chhipa RR,Mohler JL.Survival advantage of AMPK activation to androgen-independent prostate cancer cells during energy stress..Cell Signal2010;221554-61

[98]

Meijer AJ.AMP-activated protein kinase and autophagy..Autophagy2007;3:238-40

[99]

Park HU,Danner M,Zhang Y,Hyduke DR,Gagnon G,Kumar D,Fornace A,Collins SP.AMP-activated protein kinase promotes human prostate cancer cell growth and survival..Mol Cancer Ther2009;8:733-41 PMCID:PMC2775041

[100]

Scherz-Shouval R,Fass E,Gil L.Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4..EMBO J2007;26:1749-60 PMCID:PMC1847657

[101]

Lin H,Laflamme P,Shayegan B,Monardo L,Singh G.Inter-related in vitro effects of androgens, fatty acids and oxidative stress in prostate cancer: a mechanistic model supporting prevention strategies..Int J Oncol2010;37:761-6

[102]

Ray PD,Tsuji Y.Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling..Cell Signal2012;24:981-90 PMCID:PMC3454471

[103]

White E.The double-edged sword of autophagy modulation in cancer..Clin Cancer Res2009;15:5308-16 PMCID:PMC2737083

[104]

Tang DG.Target to apoptosis: a hopeful weapon for prostate cancer..Prostate1997;32:284-93

[105]

Saleem A,Santanam U,Bray K,White E.Effect of dual inhibition of apoptosis and autophagy in prostate cancer..Prostate2012;72:1374-81 PMCID:PMC3840901

[106]

Nakajima Y,Mallouh C.TNF-mediated cytotoxicity and resistance in human prostate cancer cell lines..Prostate1996;29:296-302

[107]

Giampietri C,Padula F,Marini ES,Filippini A.Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis..Apoptosis2012;17:1210-22

[108]

He W,Xu J,Padilla MT,Gou X.Attenuation of TNFSF10/TRAIL induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation..Autophagy2012;8:1811-21 PMCID:PMC3541290

[109]

Shin S,Jeong S,Song KS,Park JH,Han J,Kweon GR,Wu T,Lim K.The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53..Biomed Res Int2013;2013:568671 PMCID:PMC3691929

[110]

Xu AH,Qu JB,Syed AK,Lou HX.Cyclic bisbibenzyls induce growth arrest and apoptosis of human prostate cancer PC3 cells..Acta Pharmacol Sin2010;31:609-15 PMCID:PMC4002752

[111]

Jiang H,Xu Q,Wei J,Yuan H.Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells..Cell Death Dis2013;4:e761 PMCID:PMC3763447

[112]

Chang YM,Evans CP.Nonreceptor tyrosine kinases in prostate cancer..Neoplasia2007;9:90-100 PMCID:PMC1813931

[113]

Kung HJ.Targeting tyrosine kinases and autophagy in prostate cancer..Horm Cancer2011;2:38-46 PMCID:PMC3020299

[114]

Kim LC,Haura EB.Src kinases as therapeutic targets for cancer..Nat Rev Clin Oncol2009;6:587-95

[115]

Saad F.Src as a therapeutic target in men with prostate cancer and bone metastases..BJU Int2009;103:434-40

[116]

Wu Z,Yang JC,Wang LY,Ma AH,Lo SH,Lam KS.Autophagy blockade sensitizes prostate cancer cells towards src family kinase inhibitors..Genes Cancer2010;1:40-9 PMCID:PMC2930266

[117]

Guo W,Bhardwaj G,Changou C,Mazloom A,Xiao K,Kumaresan P,Yeh CT,Patterson R,Kung HJ.Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor..Cell Death Dis2014;5:e1409 PMCID:PMC4540187

[118]

Qui Y,Pretlow TG.Etk/Bmx, a tyrosin kinase with a pleckstrin-homology domain, is an effectorof phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells..Proc Natl Acad Sci U S A1998;95:3644-9

[119]

Jiang T,Dai B,Ann DK,Qui Y.Bi-directional regulation between tyrosine kinase Etk/BMX and tumor suppressor p53 in response to DNA damage..J Biol Chem2004;279:50181-9

[120]

Wu YM,Kung HJ.Proteolytic activation of ETK/Bmx tyrosine kinase by caspase..J Biol Chem2001;276:17672-8

[121]

Lee LF,Desai SJ,Chen HW,Kung HJ.Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK..Oncogene2004;23:2197-205

[122]

Vallo S,Stastny M,Juengel E,Bartsch G,Blaheta RA.PXD101 potentiates hormonal therapy and prevents the onset of castration-resistant phenotype modulating androgen receptor, HSP90, and CRM1 in preclinical models of prostate cancer..Endocr Relat Cancer2013;20:321-37

[123]

Long J,Yan Z,Wang N.Antitumor effects of a novel sulfur-containing hydroxamate histone deacetylase inhibitor H40..Int J Cancer2009;124:1235-44

[124]

Patra N,Kim TH,Ahn MY,Yoon JH,Moon HR,Kim HS.A novel histone deacetylase (HDAC) inhibitor MHY219 induces apoptosis via up-regulation of androgen receptor expression in human prostate cancer cells..Biomed Pharmacother2013;67:407-15

[125]

Beaver LM,Sokolowski EI,Dashwood RH.3,3'-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells..Toxicol Appl Pharmacol2012;236:345-51 PMCID:PMC3428467

[126]

Choi ES,Park SK,Kim HJ,Kim HM.A248, a novel synthetic HDAC inhibitor, induces apoptosis through the inhibition of specificity protein 1 and its downstream proteins in human prostate cancer cells..Mol Med Rep2013;8:195-200

[127]

Vallo S,Stastny M,Juengel E,Bartsch G,Blaheta RA.The prostate cancer blocking potential of the histone deacetylase inhibitor LBH589 is not enhanced by the multi receptor tyrosine kinase inhibitor TKI258..Invest New Drugs2013;31:265-72

[128]

Hoang JJ,Volle DH,Trousson A.Lipids, LXRs and prostate cancer: are HDACs a new link?.Biochem Pharmacol2013;86:168-74

[129]

Tang X,Li F,Yang C,Shi Q,He D.Salen-Mn compounds induces cell apoptosis in human prostate cancer cells through promoting AMPK activity and cell autophagy..Oncotarget2017;8:86277-86 PMCID:PMC5689684

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/